


Lecture Notes in Bioinformatics 4075
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science



Ulf Leser Felix Naumann
Barbara Eckman (Eds.)

Data Integration
in the Life Sciences

Third International Workshop, DILS 2006
Hinxton, UK, July 20-22, 2006
Proceedings

13



Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Ulf Leser
Felix Naumann
Humboldt-Universität zu Berlin, Institut für Informatik
Unter den Linden 6, 10099 Berlin, Germany
E-mail: {leser, naumann}@informatik.hu-berlin.de

Barbara Eckman
IBM Application and Integration Middleware
1475 Phoenixville Pike, West Chester, PA 19380, USA
E-mail: baeckman@us.ibm.com

Library of Congress Control Number: 2006928955

CR Subject Classification (1998): H.2, H.3, H.4, J.3

LNCS Sublibrary: SL 8 – Bioinformatics

ISSN 0302-9743
ISBN-10 3-540-36593-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-36593-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11799511 06/3142 5 4 3 2 1 0



Preface

Data management and data integration are fundamental problems in the life
sciences. Advances in molecular biology and molecular medicine are almost uni-
versally underpinned by enormous efforts in data management, data integration,
automatic data quality assurance, and computational data analysis. Many hot
topics in the life sciences, such as systems biology, personalized medicine, and
pharmacogenomics, critically depend on integrating data sets and applications
produced by different experimental methods, in different research groups, and at
different levels of granularity. Despite more than a decade of intensive research
in these areas, there remain many unsolved problems. In some respects, these
problems are becoming more severe, both due to continuous increases in data
volumes and the growing diversity in types of data that need to be managed.
And the next big challenge is already upon us: the need to integrate the differ-
ent “omics” data sets with the vast amounts of clinical data, collected daily in
thousands of hospitals and physicians’ offices all over the world.

DILS 2006 is the third in an annual workshop series that aims at fostering
discussion, exchange, and innovation in research and development in the areas
of data integration and data management for the life science. DILS 2004 in
Leipzig and DILS 2005 in San Diego each attracted around 100 researchers from
all over the world. This year the number of submitted papers again increased.
The Program Committee selected 23 papers out of 50 strong full submissions.
In an effort to include contributions that do not present a new method but
that describe innovative and up-and-running practical systems, we distinguished
“research papers” and “systems papers.” The seven systems papers can be found
in the sections Systems I and Systems II. Among the research papers there are
four short papers and 12 full papers.

In addition to the presented papers, DILS 2006 featured two invited talks by
Victor M. Markowitz and James H. Kaufmann and a session with updates on
projects of world-wide importance: the Taverna eScience project, the BioMoby
integration framework, and the BioMart integrated genomics data warehouse.
Finally, there was a lively poster session.

The workshop was held at the Wellcome Trust Conference Center on the
campus of the European Bioinformatics Institute (EBI) in Hinxton, UK. It was
kindly sponsored by Microsoft Research, who also made available their confer-
ence management system, IBM Research, metanomics, metanomicshealth, the
EBI industry programme, and by Schering AG. We are grateful for the help
of Springer in putting together and publishing these proceedings. As Program
Co-chairs we thank all authors who submitted their work, and the Program
Committee members for their careful (and timely) reviews.

We particularly thank Paul Kersey of the EBI, who served as Local Chair of
the workshop, and thus did all the hard work.

June 2006 Ulf Leser
Felix Naumann

Barbara Eckman



Organization

DILS 2006 Co-chairs

Ulf Leser Humboldt-Universität zu Berlin, Germany
Felix Naumann Humboldt-Universität zu Berlin, Germany
Barbara Eckman IBM Healthcare and Life Sciences, USA

Local Chair

Paul Kersey, European Bioinformatics Institute, Hinxton, UK

Program Committee

Emmanuel Barillot Institut Curie France
David Benton GlaxoSmithKline USA
Laure Berti-Equille Universitaire de Beaulieu France
Peter Bunemann University of Edinburgh UK
Terence Critchlow Lawrence Livermore National Laboratory USA
Jürgen Eils Deutsches Krebsforschungszentrum DKFZ Germany
Floris Geerts University of Edinburgh and UK

Limburgs Universitair Centrum
Amarnath Gupta San Diego Supercomputer Center USA
Joachim Hammer University of Florida USA
Henning Hermjakob European Bioinformatics Institute UK
Mike Hogarth UC Davis USA
Stefan Jablonski Univ. Erlangen-Nuernberg Germany
H V Jagadish University of Michigan USA
Hasan Jamil Wayne State University USA
Jacob Köhler Rothamsted Research UK
Peter Karp SRI International USA
Vipul Kashyap Partners HealthCare System USA
Arek Kasprzyk European Bioinformatics Institute UK
Anthony Kosky Axiope Inc USA
Bertram Ludäscher UC Davis USA
Paula Matuszek GlaxoSmithKline Beecham USA
Peter Mork The MITRE Corporation USA
Jignesh Patel University of Michigan USA
Norman Paton University of Manchester UK
Christian Piepenbrock Epigenomics AG Germany
Erhard Rahm Universität Leipzig Germany



VIII Organization

Louiqa Raschid University of Maryland USA
Otto Ritter AstraZeneca USA
Monica Scannapieco University of Rome “La Sapienza” Italy
Dennis Paul Wall Harvard Medical School USA
Sharon Wang IBM Healthcare and Life Sciences USA
Bertram Weiss Schering AG Germany
Limsoon Wong Institute for Infocomm Research Singapore

Additional Reviewers

Shawn Bowers
Adriane Chapman
Hon Nian Chua
Heiko Dietze
Andreas Doms
Nan Guo
Michael Hartung

Andrew Jones
Toralf Kirsten
Judice Koh
Jörg Lange
Mario Latendresse
Christian Lawerenz
Timothy M. McPhillips

Heiko Müller
Eugene Novikov
Loic Royer
Donny Soh
Silke Trissl
Thomas Wächter

Sponsoring Institutions

Microsoft Research http://research.microsoft.com/
metanomics http://www.metanomics.de/
metanomicshealth http://www.metanomics-health.de/
IBM Research http://www.research.ibm.com/
EBI Industry Program http://industry.ebi.ac.uk/
Schering http://www.schering.de/

Website

For more information please visit the DILS 2006 website at http://www.
informatik.hu-berlin.de/dils2006/.



Table of Contents

Keynotes

An Application Driven Perspective on Biological Data
Integration

Victor M. Markowitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Towards a National Healthcare Information Infrastructure
Sarah Knoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Data Integration

Data Access and Integration in the ISPIDER Proteomics
Grid

Lucas Zamboulis, Hao Fan, Khalid Belhajjame, Jennifer Siepen,
Andrew Jones, Nigel Martin, Alexandra Poulovassilis,
Simon Hubbard, Suzanne M. Embury, Norman W. Paton . . . . . . . . . . . 3

A Cell-Cycle Knowledge Integration Framework
Erick Antezana, Elena Tsiporkova, Vladimir Mironov,
Martin Kuiper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Link Discovery in Graphs Derived from Biological Databases
Petteri Sevon, Lauri Eronen, Petteri Hintsanen, Kimmo Kulovesi,
Hannu Toivonen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Text Mining

Towards an Automated Analysis of Biomedical Abstracts
Barbara Gawronska, Björn Erlendsson, Björn Olsson . . . . . . . . . . . . . . . 50

Improving Text Mining with Controlled Natural Language: A Case
Study for Protein Interactions

Tobias Kuhn, Löıc Royer, Norbert E. Fuchs, Michael Schröder . . . . . . 66

SNP-Converter: An Ontology-Based Solution to Reconcile
Heterogeneous SNP Descriptions for Pharmacogenomic Studies

Adrien Coulet, Malika Smäıl-Tabbone, Pascale Benlian,
Amedeo Napoli, Marie-Dominique Devignes . . . . . . . . . . . . . . . . . . . . . . . 82



X Table of Contents

Systems I

SABIO-RK: Integration and Curation of Reaction Kinetics Data
Ulrike Wittig, Martin Golebiewski, Renate Kania, Olga Krebs,
Saqib Mir, Andreas Weidemann, Stefanie Anstein, Jasmin Saric,
Isabel Rojas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

SIBIOS Ontology: A Robust Package for the Integration and Pipelining
of Bioinformatics Services

Malika Mahoui, Zina Ben Miled, Sriram Srinivasan, Mindi Dippold,
Bing Yang, Li Nianhua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Data Structures for Genome Annotation, Alternative Splicing,
and Validation

Sven Mielordt, Ivo Grosse, Jürgen Kleffe . . . . . . . . . . . . . . . . . . . . . . . . . . 114

BioFuice: Mapping-Based Data Integration in Bioinformatics
Toralf Kirsten, Erhard Rahm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Potpourri

A Method for Similarity-Based Grouping of Biological Data
Vaida Jakonienė, David Rundqvist, Patrick Lambrix . . . . . . . . . . . . . . . . 136

On Querying OBO Ontologies Using a DAG Pattern Query Language
Amarnath Gupta, Simone Santini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Using Term Lists and Inverted Files to Improve Search Speed
for Metabolic Pathway Databases

Greeshma Neglur, Robert L. Grossman, Natalia Maltsev,
Clement Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Systems II

Arevir: A Secure Platform for Designing Personalized Antiretroviral
Therapies Against HIV

Kirsten Roomp, Niko Beerenwinkel, Tobias Sing, Eugen Schülter,
Joachim Büch, Saleta Sierra-Aragon, Martin Däumer,
Daniel Hoffmann, Rolf Kaiser, Thomas Lengauer, Joachim Selbig . . . . 185

The Distributed Annotation System for Integration of Biological Data
Andreas Prlić, Ewan Birney, Tony Cox, Thomas A. Down,
Rob Finn, Stefan Gräf, David Jackson, Andreas Kähäri,
Eugene Kulesha, Roger Pettett, James Smith, Jim Stalker,
Tim J.P. Hubbard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



Table of Contents XI

An Information Management System for Collaboration Within
Distributed Working Environment

Maria Samsonova, Andrei Pisarev, Konstantin Kozlov,
Ekaterina Poustelnikova, Arthur Tkachenko . . . . . . . . . . . . . . . . . . . . . . . 204

Short Papers

Ontology Analysis on Complexity and Evolution Based
on Conceptual Model

Zhe Yang, Dalu Zhang, Chuan Ye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Distributed Execution of Workflows in the INB
Ismael Navas-Delgado, Antonio J. Pérez, Jose F. Aldana-Montes,
Oswaldo Trelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Knowledge Networks of Biological and Medical Data: An Exhaustive
and Flexible Solution to Model Life Science Domains

Sascha Losko, Karsten Wenger, Wenzel Kalus, Andrea Ramge,
Jens Wiehler, Klaus Heumann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

On Characterising and Identifying Mismatches in Scientific Workflows
Khalid Belhajjame, Suzanne M. Embury, Norman W. Paton . . . . . . . . 240

Workflow

Collection-Oriented Scientific Workflows for Integrating and Analyzing
Biological Data

Timothy McPhillips, Shawn Bowers, Bertram Ludäscher . . . . . . . . . . . . 248

Towards a Model of Provenance and User Views in Scientific
Workflows

Shirley Cohen, Sarah Cohen-Boulakia, Susan Davidson . . . . . . . . . . . . . 264

An Extensible Light-Weight XML-Based Monitoring System
for Sequence Databases

Dieter Van de Craen, Frank Neven, Kerstin Koch . . . . . . . . . . . . . . . . . . 280

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297



U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, p. 1, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

An Application Driven Perspective  
on Biological Data Integration  

(Keynote Presentation) 

Victor M. Markowitz 

Lawrence Berkeley National Lab 
Biological Data Management and Technology 

1 Cyclotron Road, Berkeley, CA 94720  
VMMarkowitz@lbl.gov 

Data integration is an important part of biological applications that acquire data 
generated using evolving technologies and methods or involve data analysis across 
diverse specialized databases that reflect the expertise of different groups in a specific 
domain. The increasing number of such databases, the emergence of new types of 
data that need to be captured, as well as the evolving biological knowledge add to the 
complexity of already challenging integration problems. Furthermore, devising 
solutions to these problems requires technical expertise in several areas, such as 
database management systems, database administration and software engineering, as 
well as data modeling and analysis.  

In practice, biological data integration is less daunting when considered in the 
context of scientific applications that address specific research questions. Established 
technologies and methods, such as database management systems, data warehousing 
tools, and statistical methods, have been employed successfully in developing systems 
that address such questions. The key challenge is marshaling the scientific and 
technical expertise required for formulating research questions, determining the 
integrated data framework for answering them, and addressing the underlying data 
semantics problems. 

Evidence suggests that an iterative strategy based on gradually accumulating 
domain specific knowledge throughout the integration process is effective in devising 
solutions for application specific biological data integration problems. This strategy 
will be discussed in the context of two recently developed integrated genome systems, 
IMG (http://img.jgi.doe.gov) and IMG/M (http://img.jgi.doe.gov/m).  



U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, p. 2, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Towards a National Healthcare Information 
Infrastructure 

(Keynote Presentation) 

Sarah Knoop 

IBM Healthcare Information Management,  
IBM Almaden Research Center,  

650 Harry Rd, San Jose, CA 95120 
seknoop@us.ibm.com 

Many countries around the world have placed an increased focus on the need to 
modernize their healthcare information infrastructure. This is particularly challenging in 
the United States. The U.S. healthcare industry is by far the largest in the world in both 
absolute dollars and in percentage of GDP (>$1.7T - 15% of GDP).  It is also quite 
fragmented and complex. This complexity, coupled with an antiquated infrastructure for 
the collection of and access to medical data, leads to enormous inefficiencies and 
sources of error.  Driven by consumer, regulatory, and governmental pressure, there is a 
growing consensus that the time has come to modernize the US Healthcare Information 
Infrastructure (HII). A modern HII will provide care givers with better and timelier 
access to data. The launch of a National Health Infrastructure Initiative (NHII) in the US 
in May 2004 - with the goal of providing an electronic health record for every American 
within the next decade- will eventually transform the healthcare industry in general...just 
as I/T has transformed other industries in the past.  While such transformation may be 
disruptive in the short term, it will in the future significantly improve the quality, 
efficiency, and successful delivery of healthcare while decreasing costs to patients and 
payers and improving the overall experiences of consumers and providers.  The key to 
this successful outcome will be based on the way we apply I/T to healthcare data and to 
the services delivered through that I/T.  This must be accomplished in a way that 
protects individuals, allows competition, but gives caregivers reliable and efficient 
access to the data required to treat patients and to improve the practice of medical 
science. 

In this talk we will describe the IBM Research HII project and our implementation 
of the standards for interoperability. We will also discuss how the same infrastructure 
required for interoperable electronic patient records must support the needs of medical 
science and public health. This can be accomplished by building higher level services 
upon a National Health Information Network, including discovery services for 
medical research and data mining and modeling services to protect populations 
against emerging infectious disease.  



Data Access and Integration
in the ISPIDER Proteomics Grid

Lucas Zamboulis1,2, Hao Fan1,2,�, Khalid Belhajjame3, Jennifer Siepen3,
Andrew Jones3, Nigel Martin1, Alexandra Poulovassilis1, Simon Hubbard3,

Suzanne M. Embury4, and Norman W. Paton4

1 School of Computer Science and Information Systems, Birkbeck, Univ. of London
2 Department of Biochemistry and Molecular Biology, University College London

3 Faculty of Life Sciences, University of Manchester
4 School of Computer Science, University of Manchester

Abstract. Grid computing has great potential for supporting the inte-
gration of complex, fast changing biological data repositories to enable
distributed data analysis. One scenario where Grid computing has such
potential is provided by proteomics resources which are rapidly being de-
veloped with the emergence of affordable, reliable methods to study the
proteome. The protein identifications arising from these methods derive
from multiple repositories which need to be integrated to enable uni-
form access to them. A number of technologies exist which enable these
resources to be accessed in a Grid environment, but the independent
development of these resources means that significant data integration
challenges, such as heterogeneity and schema evolution, have to be met.
This paper presents an architecture which supports the combined use of
Grid data access (OGSA-DAI), Grid distributed querying (OGSA-DQP)
and data integration (AutoMed) software tools to support distributed
data analysis. We discuss the application of this architecture for the in-
tegration of several autonomous proteomics data resources.

1 Introduction

Grid computing technologies are becoming established which enable distributed
computational and data resources to be accessed in a service-based environment.
In the life sciences, these technologies offer the possibility of analysis of complex
distributed post-genomic resources. To support transparent access, however, such
heterogeneous resources need to be integrated rather than simply accessed in a
distributed fashion. This paper presents an architecture for such integration
and discusses the application of this architecture for the integration of several
autonomous proteomics resources.

Proteomics is the study of the protein complement of the genome. It is a
rapidly expanding group of technologies adopted by laboratories around the
world as it is an essential component of any comprehensive functional genomics
� Currently at International School of Software, Wuhan University, China.

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 3–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



4 L. Zamboulis et al.

study targeted at the elucidation of biological function. This popularity stems
from the increased availability and affordability of reliable methods to study the
proteome, as well as the ever growing numbers of tertiary structures and genome
sequences emerging from structural genomics and sequencing projects.

The In Silico Proteome Integrated Data Environment Resource (ISPIDER)
project1 aims to develop an integrated platform of proteome-related resources,
using existing standards from proteomics, bioinformatics and e-Science. The in-
tegration of such resources would be extremely beneficial for a number of reasons.
First, having access to more data leads to more reliable analyses; for example,
performing protein identifications over an integrated resource would reduce the
chances of false negatives. Second, bringing together resources containing differ-
ent but closely related data increases the breadth of information the biologist has
access to. Furthermore, the integration of these resources, as opposed to merely
providing a common interface for accessing them, enables data from a range of
experiments, tissues, or different cell states to be brought together in a form
which may be analysed by a biologist in spite of the widely varying coverage and
underlying technology of each resource.

In this paper we present an architecture which supports the combined use
of Grid data access (OGSA-DAI), Grid distributed querying (OGSA-DQP) and
data integration (AutoMed) software tools, together with initial results from
the integration of three distributed, autonomous proteomics resources, namely
gpmDB2, Pedro3 and PepSeeker4. The emergence of databases on experimental
proteomics, capturing data from experiments on protein separation and identifi-
cation, is very recent and we know of no previous work that combines data access,
distributed querying and data integration of multiple proteomics databases as
described here.

Paper outline: Section 2 gives an overview of the OGSA-DAI, OGSA-DQP and
AutoMed technologies and introduces the three proteomics resources we have
integrated. Section 3 discusses the development of the global schema integrating
the proteomics resources within the ISPIDER project, Section 4 presents our new
architecture, Section 5 discusses related work and Section 6 gives our conclusions
and directions of further work.

2 Background

2.1 OGSA-DAI and OGSA-DQP

OGSA-DAI (Open Grid Services Architecture - Data Access and Integration)
is an open-source, extendable middleware product exposing data resources on
Grids via web services [2]. OGSA-DAI5 supports both relational (MySQL, DB2,
1 See http://www.ispider.man.ac.uk
2 See http://gpmdb.thegpm.org
3 See http://pedrodb.man.ac.uk:8080/pedrodb
4 See http://nwsr.smith.man.ac.uk/pepseeker
5 See http://www.ogsadai.org.uk/



Data Access and Integration in the ISPIDER Proteomics Grid 5

SQL Server, Oracle, PostgreSQL), XML (Xindice, plans for eXist) and text data
sources. It provides a uniform request format for a number of operations on data
sources, including querying/updating, data transformation (XSLT), compression
(ZIP/GZIP), and data delivery (FTP/SOAP).

OGSA-DQP (Open Grid Services Architecture - Distributed Query Proces-
sor) is a service-based distributed query processor [1], offering parallelism to sup-
port efficient querying of OGSA-DAI resources available in a grid environment.
OGSA-DQP6 offers two services, the Grid Distributed Query Service (GDQS)
or Coordinator, and the Query Evaluation Service (QES) or Evaluator. The
Coordinator uses resource metadata and computational resource information to
compile, optimise, partition and schedule distributed query execution plans over
multiple execution nodes in the Grid. The distributed evaluator services execute
query plans generated by the Coordinator. Each Evaluator evaluates a partition
of the query execution plan assigned to it by a Coordinator. A set of Evaluators
participating in a query form a tree through which data flows from leaf Evalua-
tors which interact with Grid data services, up the tree to reach its destination.

The following steps are needed for a client to set up a connection with OGSA-
DQP and execute queries over OGSA-DAI resources. First, the client configures
an appropriate GDQS data service resource. As a result of this process, the
schemas of the resources are imported and the client is able to access one or more
of the databases whose schemas have been referenced within a single query. The
client then submits a Perform Document to OGSA-DQP containing an OQL [5]
query. The Polar* [21] compiler parses, optimises and schedules the query. The
query is partitioned, and each partition is sent to a different Evaluator. The
Evaluators then interact with the OGSA-DAI resources and with each other,
and send their results back to the GDQS, and, finally, the client.

2.2 AutoMed

AutoMed7 is a heterogeneous data transformation and integration system which
offers the capability to handle virtual, materialised and indeed hybrid data in-
tegration across multiple data models. It supports a low-level hypergraph-based
data model (HDM) and provides facilities for specifying higher-level modelling
languages in terms of this HDM. An HDM schema consists of a set of nodes,
edges and constraints, and each modelling construct of a higher-level modelling
language is specified as some combination of HDM nodes, edges and constraints.
For any modelling language M specified in this way (via the API of AutoMed’s
Model Definitions Repository), AutoMed provides a set of primitive schema
transformations that can be applied to schema constructs expressed in M. In
particular, for every construct of M there is an add and a delete primitive trans-
formation which add to/delete from a schema an instance of that construct. For
those constructs of M which have textual names, there is also a rename primitive
transformation.

6 See http://www.ogsadai.org.uk/about/ogsa-dqp/
7 See http://www.doc.ic.ac.uk/automed



6 L. Zamboulis et al.

AutoMed schemas can be incrementally transformed by applying to them a
sequence of primitive transformations, each adding, deleting or renaming just one
schema construct (thus, in general, AutoMed schemas may contain constructs
of more than one modelling language). A sequence of primitive transformations
from one schema S1 to another schema S2 is termed a pathway from S1 to S2. All
source, intermediate, and integrated schemas, and the pathways between them,
are stored in AutoMed’s Schemas & Transformations Repository.

Each add and delete transformation is accompanied by a query specifying
the extent of the added or deleted construct in terms of the rest of the constructs
in the schema. This query is expressed in a functional query language, IQL, and
we will see some examples of IQL queries in Section 4.2. Also available are
extend and contract primitive transformations which behave in the same way
as add and delete except that they state that the extent of the new/removed
construct cannot be precisely derived from the other constructs present in the
schema. More specifically, each extend and contract transformation takes a
pair of queries that specify a lower and an upper bound on the extent of the
construct. The lower bound may be Void and the upper bound may be Any, which
respectively indicate no known information about the lower or upper bound of
the extent of the new construct.

The queries supplied with primitive transformations can be used to translate
queries or data along a transformation pathway — we refer the reader to [15,14]
for details. The queries supplied with primitive transformations also provide the
necessary information for these transformations to be automatically reversible, in
that each add/extend transformation is reversed by a delete/contract trans-
formation with the same arguments, while each rename is reversed by a rename
with the two arguments swapped.

As discussed in [15], this means that AutoMed is a both-as-view (BAV) data
integration system: the add/extend steps in a transformation pathway corre-
spond to Global-As-View (GAV) rules as they incrementally define target schema
constructs in terms of source schema constructs; while the delete and contract
steps correspond to Local-As-View (LAV) rules since they define source schema
constructs in terms of target schema constructs. An in-depth comparison of BAV
with other data integration approaches can be found in [15,14].

2.3 The Proteomics Resources

Thus far we have integrated three autonomous proteomics resources, all of which
contain information on protein/peptide identification:

The Proteome Experimental Data RepOsitory (PEDRo [9]) provides access to
a collection of descriptions of experimental data sets in proteomics.PEDRowasone
of thefirstdatabases used for storingproteomics experimental data. It has also been
used as a format for exchanging proteomics data, and in this respect has influenced
the standardisation activities of the Proteomics Standards Initiative (PSI8).

The Global Proteome Machine Database (gpmDB [6]) is a publicly avail-
able database with over 2,200,000 proteins and almost 470,000 unique peptide
8 See http://psidev.sourceforge.net



Data Access and Integration in the ISPIDER Proteomics Grid 7

identifications. The resource was initially designed to assist in the validation
of peptide MS/MS spectra and protein coverage patterns, where patterns in
previous assignments could be used to allow some measure of confidence to be
assigned to new identifications. Although the gpmDB is restricted to minimal
information relating to the protein/peptide identification, it provides access to a
wealth of interesting and useful peptide identifications from a range of different
laboratories and instruments.

PepSeeker [16] is a database developed as part of the ISPIDER project and
is targeted directly at the identification stage of the proteomics pipeline. The
database captures the identification allied to the peptide sequence data, coupled
to the underlying ion series and as a result it is a comprehensive resource of pep-
tide/protein identifications. The repository currently holds over 50,000 proteins
and 50,000 unique peptide identifications.

3 The Proteomics Grid Application

3.1 The ISPIDER Project

Experimental proteomics is an essential component for the elucidation of protein
biological functions. It involves the study of a set of proteins produced by an
organism with the aim of understanding their behaviour under a variety of exper-
imental conditions and environments. The development of new technologies for
protein separation, such as 2D-SDS-PAGE (PolyAcrylamide Gel Electrophore-
sis), High Performance Liquid Chromatography (HPLC) and Capillary Elec-
trophoresis, together with the availability of public accessible protein sequence
databases, has enabled scientists to conduct many interesting proteomics exper-
iments on a daily basis. Also, thanks to techniques such as Multi-Dimensional
Protein Identification Technology (MudPIT), a single proteomics experiment
may identify hundreds of proteins and, as a result, produce a large amount of
valuable biological data.

There is a growing number of resources that offer a range of approaches for
the capture, storage and dissemination of proteomic experimental data, reflect-
ing the fact that proteomics has now come of age in the post-genomic era and
is delivering large, complex datasets which are rich in information. While the
existence of such databases opens up many possibilities for the proteomics com-
munity, there is still a need for a support for integrating proteomics data, and
tools for constructing proteomics-specific experiments.

The aim of the ISPIDER project is to build on state-of-the-art technologies
for e-science and data integration in order to provide an environment for in-
tegrating proteomics data, constructing and executing analyses over such data,
and a library of proteomics-aware components that can act as building blocks for
such analyses. The project is Grid-enabling existing proteomics data resources,
creating new resources, producing middleware technologies for the integration
of these resources — including tools for data integration, workflows and data
analysis — and producing visualisation and other types of client for biologist
end users.



8 L. Zamboulis et al.

3.2 Developing the Global Schema

One of the key questions that arose when we started the integration task, was
the scope of the global schema. One choice would be a global schema targeted to
answering a specific class of proteomics questions e.g. protein-specific questions.

accession
mod_database
mode_database_version

PeptideModification

PEDRo

gpmDB

PepSeeker

Pride

Legend

usermail
cle

DBSearch

all_peptides_matched
expect
score
threshold

ProteinHit

accession_number
gene_name
synonyms
organism
orf_number
description
sequence
modifications
predicted_mass
predicted_pi
rf

Protein

program
database
database_date
parameter_file
taxonomical_filter
fixed_modification
variable_modification
max_miss_cleavages
mass_value_type
fragment_ion_tolerance
peptide_mass_tolerance
accurate_mass_mode
mass_error_type
mass_error
protonated
icat_option
tolu
itolu
icat
instrument

DBSearchParam

m_to_z
abundance
multiplicity

Peak

Precursor

immon
A
AStar
B
BStar
BStarplusplus
Bzero
Bzeroplusplus
Y
Yplusplus
Ystar
Ystarplusplus
YZero
YZeroplusplus
Bplusplus
Aplusplus
Astarplusplus
Azero
matches

IonTable

type
at
modified
pm

AA

*

*

1

1

*

1

1..n *

*

1

* 1

Spectrum

ms_range_stop
ms_range_start

1

*

parent

child

0..1

*

1

*

1

*

ms_level

score

sequence
information
probability
mh
charche
pep_start
pep_end
delta
massNo

mrexpt
misscleav

scrore_type

PeptideHit

username
id_date
n−terminal_aa
c−terminal_aa
count_of_specific_aa
name_of_counted_aa
regex_pattern

Fig. 1. The Global Schema — colouring denotes the origin of the attributes



Data Access and Integration in the ISPIDER Proteomics Grid 9

A typical query that could be issued in such a case would be give me the list of
proteins that have been identified so far by the proteomics experiments. Opting
for this choice implies a limited usage of the integrated databases. For example,
the user will probably not be able to have information on the peptide masses
that have been used as inputs to the identification. An alternative choice would
be a global schema that is a ‘union’ schema, integrating the full schemas of
the participant databases. Building such a schema together with specifying the
mappings between its constructs and the constructs of the participant schemas
may, however, turn out to be a complex and lengthy process.

The option we chose is therefore a trade-off between these two alternatives,
and the global schema is a subset of the union of the participant schemas. This
global schema captures enough information for answering common proteomics
questions, particularly queries involving analysis of the results of the proteomics
experiments. The scope of this results analysis ranges from the software used
for the identification, the peptides produced by the digestion of the proteins,
the protein database against which the candidate proteins are compared, to the
score and description of the identified proteins. Our choice of results analysis
as the scope of the global schema has also been motivated by the fact that it
represents the area of overlap between the three databases being integrated, thus
allowing the user to pose queries that combine and compare results analysis from
the three databases.

Figure 1 gives a UML class diagram of the global schema (the PRIDE9 data
resource mentioned in the figure has not yet been integrated with the other
three resources and this is an area of ongoing work). In a protein identification
pipeline (a common type of proteomics experiment), a protein is identified using
a mass spectrometer which determines the mass-to-charge ratio of the protein
ions. The ms level of Spectrum describes how many rounds of Mass Spectrometry
(MS) have been performed, for example a common and powerful MS technique
is tandem MS, in which two rounds of MS are performed. The first round of MS
produces a spectra of the precursor ions, predefined selections (determined by
mz range start and mz range end) of the precursor ions then undergo a second MS
round to produce a number of product ion spectra. The relationship between each
product spectra and its respective precursor spectra is captured by the Precursor
association. Individual peaks in each of the precursor spectra are described by
the mass-to-charge ratio (m to z), the peak height (abundance) and the isotopic
pattern around the main peak (multiplicity).

The next step in the protein identification pipeline then involves submis-
sion of the ion spectra (described by Spectrum) to an identification tool such as
Mascot10 [18] or Imprint11. The classes DBSearch and DBSearchParam capture
information about who did the identification, when they did it, what program
they used, what database was searched, etc.

9 See http://www.ebi.ac.uk/pride/
10 See http://www.matrixscience.com/search form select.html
11 Imprint is an in-house software tool for Peptide Mass Fingerprinting (PMF), which

involves only a single round of MS.



10 L. Zamboulis et al.

In tandem MS, several peptide hits are often generated in the identification
process. A PeptideHit is linked to IonTable and AA. IonTable provides information
on ions matching peptide ion fragments. AA describes how specific amino acid
residues in a Peptide are modified (usually chemical modifications), modified,
and indicates whether the residue was determined to be a point mutation, pm.
ProteinHit represents the proteins against which all or some of the peptides have
been aligned, and links to some information about the protein itself. A Protein
is characterised by a textual description of the protein, an accession number,
the predicted mass of the protein, its amino-acid sequence, any common in vivo
modifications, the organism in which it is to be found, the open reading frame
number, orf number, and the reading frame, rf.

To build the above global schema, we adopted an incremental approach.
We began with the PEDRo schema, specifically the section of its schema that
captures peptide/protein identifications. This was for two reasons. First, the
results analysis in the PEDRo schema has significant overlaps with the schemas
of the other databases and covers most of our target global schema. Second, the
PEDRo schema captures more information compared to the other databases,
and thus allows for a more detailed view of the results analysis. For example, in
PEDRo, the protein is characterized by the accession number, the synonyms, the
organism that was the source of the protein and the sequence of the protein, in
addition to other information. In contrast, a protein in PepSeeker, for instance,
is simply described by its accession number and name.

Given this initial global schema, we then derived the correspondences be-
tween the classes and attributes of gpmDB and PepSeeker with this schema.
The limited schema documentation and sometimes cryptic attribute naming of
those resources meant interviews with the database providers were needed to
identify precisely the meaning of every attribute in the schemas.

The global schema was then incrementally expanded by additional classes
and attributes that were captured in those databases and not already in the
global schema. This mainly consisted of adding the information about the ions
associated to the peptides and the modifications they undergo. For example,
from PepSeeker, we added the entity IonTable which provides information on the
ions matching peptide ion fragments. The schemas of gpmDB and PepSeeker are
relatively disjoint, with respect to the set of fields that have been added to the
global schema, with few exceptions such as the attributes pep start and pep end
of the class PeptideHit which exist in both PepSeeker and gpmDB schemas.

To identify the instances of the global schema entities, we chose to use life
science identifiers LSIDs12. LSID is a Life Sciences Research Uniform Resource
Name (URN) specification which provides a standardised naming schema for
biological entities in the life sciences domain. The three databases use integers
to identify their entity instances, and the usage of LSIDs in the (virtual) global
database allowed us to overcome the problem of identifier conflict. For exam-
ple, the LSID URN:LSID:ispider.man.ac.uk:pedro.protein:99 refers to the protein

12 See http://www.omg.org/technology/documents/formal/life sciences.htm



Data Access and Integration in the ISPIDER Proteomics Grid 11

identified by the number 99 in the Pedro database, where ispider.man.ac.uk de-
notes the authority that issued the LSID13.

4 System Architecture

While OGSA-DAI supports access of data resources in a Grid and OGSA-DQP
supports distributed querying of such resources and location transparency, these
technologies do not support schema transformation and schema integration.
Thus, if applications require heterogeneous Grid-based data to be transformed
and integrated, the onus is on the application to encode the necessary transfor-
mation/integration logic. This may impact on the robustness and maintainability
of applications, and hence the use of data integration middleware that abstracts
out this functionality from applications is advantageous because it enables ap-
plications to access resources as one virtual integrated resource, notwithstanding
the varying formats and data models used by those autonomous resources. To
our knowledge, there is currently no such Grid-enabled middleware, and hence
our decision to combine OGSA-DAI/DQP with AutoMed into an architecture
that enables both transformation and integration of Grid-based data and dis-
tributed query processing over the Grid resources. The main advantage of using
AutoMed rather than a LAV or GAV-based data integration system is that it
readily supports the evolution of both source and integrated schemas by allowing
transformation pathways to be extended — this means that the entire integra-
tion process does not have to be repeated, and the schemas and pathways can
instead be ‘repaired’.

Figure 2 illustrates the architecture we have developed. Data sources are
exposed using OGSA-DAI grid services. The AutoMed-DAI wrapper imports
schema information from any data source, via OGSA-DAI, into the AutoMed
Metadata Repository. Thereafter, AutoMed’s schema transformation/integra-
tion functionality can be used to create one or more virtual global schemas,
together with the transformation pathways between these and the AutoMed
representations of the data source schemas. Queries posed on a virtual global
schema can be submitted to AutoMed’s Query Processor, and this interacts with
OGSA-DQP via an AutoMed-DQP wrapper to evaluate these queries. OGSA-
DQP itself interacts with the data sources via the OGSA-DAI services.

In the remainder of this section we present the major components of this ar-
chitecture in greater detail: the mechanisms for enabling data access and integra-
tion; how queries posed on a virtual global schema are processed by AutoMed’s
Query Processor and OGSA-DQP; and the AutoMed-DQP wrapper.

4.1 Data Access and Integration

We assume that each data source is made accessible as a grid data resource using
OGSA-DAI’s Grid Data Service (GDS). To ‘import’ a data source schema into
AutoMed, we have developed the AutoMed-DAI Wrapper. This sends a schema
13 Note the LSID key attributes are not listed in the UML class diagram in Figure 1.



12 L. Zamboulis et al.

AutoMed
Metadata

Repository

OGSA-DQP
QES

OGSA-DQP
QES

AutoMed DAI
wrapper

AutoMed DAI
wrapper

Distributed
Query Processor

Global
AutoMed Schema

AutoMed
schema for

Pedro

AutoMed
schema for
PepSeeker

AutoMed
Query Processor

          IQL
        query

        OQL
       query

OGSA-DAI
GDS

OGSA-DAI
GDS

PepSeekerPedro

AutoMed DQP
wrapper

           OQL
           result

           IQL
           result

          IQL
        query

           IQL
           result

AutoMed
Wrappers

OGSA-DQP
QES

AutoMed DAI
wrapper

AutoMed
schema for

gpmDB

OGSA-DAI
GDS

gpmDB

OGSA-DQP
QDQS

schema
request

response
document

schema
request

response
document

schema
request

response
document

transformation pathways

Fig. 2. The AutoMed, OGSA-DAI and OGSA-DQP architecture

Global Query Processor

Query
Annotator

Logical
Optimiser

IQL
query

IQL
result

Evaluator
Query

Reformulator

AutoMed
Repository

AutoMed DQP
wrapper

Fig. 3. The AutoMed Query Processor

request document to the GDS, which returns an XML Response Document con-
taining the schema metadata of the data source. The AutoMed-DAI wrapper



Data Access and Integration in the ISPIDER Proteomics Grid 13

uses this information to create the corresponding AutoMed schema in the Au-
toMed Metadata Repository.

These AutoMed data source schemas can now be incrementally transformed
and integrated into one or more global virtual schemas, using the API of Au-
toMed’s Schemas & Transformations Repository to issue transformation steps
and to create intermediate and final virtual schemas within this repository —
we give some examples of transformations below.

4.2 Query Processing

After the integration of the data sources, the user is able to submit to the
AutoMed Query Processor (AQP) a query, Q, to be evaluated with respect to a
virtual global schema. Q is expressed in AutoMed’s own query language, IQL14.

For example, the following query, Q1, retrieves all identifications for the pro-
tein with accession number ENSP00000339074. This query would allow biologists
studying this protein to find out more about the kinds of environments in which
it has been seen by other scientists. Here, <<Protein,accession_number>> de-
notes the projection of the Protein (virtual) relation onto its primary key at-
tribute (LSID) plus its accession number attribute:

[lsid|{lsid,an}<-<<Protein,accession number>>;an=‘ENSP00000339074’]

As a second example, the following query, Q2, retrieves all protein identifica-
tions that match a given peptide. Such a query would allow a scientist working
with a protein sequence to ask whether peptide ATLITFLCDR has been seen before
in other proteomics experiments:

[{an,lsid3}|{lsid1,seq}<-<<PeptideHit,sequence>>; seq = ‘ATLITFLCDR’;
{lsid2,pr}<-<<ProteinHit,protein>>;
{lsid3,an}<-<<Protein,accession_number>>; pr = lsid3;
{pepID,protID}<-<<PeptideHitToProteinHit_mm>>;
lsid1 = pepID; lsid2 = protID]

Figure 3 shows the major components of the AQP and we now consider each
of them in turn. Since the initial query, Q, is expressed over a global schema,
it references only global schema constructs and needs to be transformed into a
query expressed over the data source schemas before it can be evaluated. This is
accomplished by the Query Reformulator component of the AQP which traverses
the schema transformation pathways from the global schema down to the data
source AutoMed schemas, and uses the query within each transformation step to
incrementally reformulate Q until finally an equivalent query Qref results which
references only schema constructs within the data source schemas.

For example, the following transformation steps within the transformation
pathways integrating respectively the PepSeeker, PEDRo and gpmDB schemas
are of relevance to reformulating Q1. Here, id2lsid is an IQL function that

14 IQL is a comprehensions-based language and we refer the reader to [12] for details of
its syntax, semantics and implementation. Such languages subsume query languages
such as SQL-92 and OQL in expressiveness [4].



14 L. Zamboulis et al.

generates the global LSID identifiers15. In the first step, the relation Protein
of the global schema is populated from the proteinhit relation of PepSeeker;
since the latter may contain multiple occurrences of any given protein, the IQL
function distinct is used to remove duplicates:

add(<<Protein,accession_num>>,
[{id2lsid [‘pepseeker.proteinhit:’,toString d],x}|

{d,x}<-(distinct [{k,x}|{k,x}<-<<proteinhit,ProteinID>>])])
...
add(<<Protein,accession_num>>,[{id2lsid [‘pedro.protein:’,toString d],x}|

{d,x}<-<<protein,accession_num>>])
...
add(<<Protein,accession_num>>,

[{id2lsid [‘gpmdb.proseq:’,toString d],x}|{d,x}<-<<proseq,label>>])

Q1 is reformulated to Q1
ref below using the queries appearing within the

above transformation steps:

[lsid|{lsid,an}<-([{id2lsid [‘pepseeker.proteinhit:’,toString d],x}|
{d,x}<-(distinct [{k,x}|{k,x}<-<<proteinhit,ProteinID>>])]

++ [{id2lsid [‘pedro.protein:’,toString d],x}|
{d,x}<-<<protein,accession_num>>]

++ [{id2lsid [‘gpmdb.proseq:’,toString d],x}|{d,x}<-<<proseq,label>>]);
an = ‘ENSP00000339074’]

Q2 makes use of the many-to-many relationship between the ProteinHit
and PeptideHit relations of the global schema for reformulation. The following
transformation steps are of relevance to answering Q2 with respect to the PEDRo
schema (we do not list the transformations relevant to the other schemas or the
reformulated query Q2

ref itself, due to space limitations)16:

add(<<PeptideHit,sequence>>,[{id2lsid [‘pedro.peptidehit:’,toString d],
x}|{{d,e},x}<-<<peptidehit,sequence>>])

...
add(<<ProteinHit,protein>>,[{id2lsid [‘pedro.proteinhit:’,toString d],

id2lsid [‘pedro.protein:’,x]}|
{d,x}<-<<proteinhit,protein>>])

...
add(<<Protein,accession_number>>,[{id2lsid [‘pedro.protein:’,toString d],

x}|{d,x}<-<<protein,accession_num>>])
...
add(<<PeptideHitToProteinHit_mm>>,

[{k1,k2}|{k1,x}<-[{id2lsid [‘pedro.peptidehit:’,toString d],x}|

15 It takes as input two string arguments, concatenates them, and prefixes the result
by ‘URN:LSID:ispider.man.ac.uk:’

16 In the first step, peptidehit has a composite key whose first attribute is used to
generate the LSID, the second attribute being a foreign key to another table.



Data Access and Integration in the ISPIDER Proteomics Grid 15

{{d,e},x}<-<<peptidehit,db_search>>];
{k2,y}<-[{id2lsid [‘pedro.proteinhit:’,toString d],x}|

{d,x}<-<<proteinhit,db_search>>];
x = y])

A reformulated query, Qref , is next processed by the Logical Optimiser com-
ponent which simplifies Qref by applying a number of algebraic optimisations. In
our context here, one goal of this component is to simplify Qref is to create the
largest possible subqueries that can be pushed down to OGSA-DQP for evalua-
tion, so as to make maximum usage of the data sources’ own query capabilities
and minimise the resource consumption of AutoMed’s Evaluator.

The optimised query, Qopt, is still expressed in IQL and needs to be translated
into OQL, the query language supported by OGSA-DQP. We have developed an
AutoMed-DQP Wrapper, see below, for translating (a subset of) IQL into OQL.

The Query Annotator component interacts with the AutoMed-DQP wrapper
to identify maximal subqueries translatable by that wrapper and to instantiate
wrapper objects within Qopt. The resulting query, Qannot, is finally sent to Au-
toMed’s Evaluator for evaluation. This makes calls to OGSA-DQP to compute
the results of the subqueries specified by the Query Annotator, and undertakes
any further necessary post-processing of these results.

4.3 The AutoMed-DQP Wrapper

The AutoMed-DQP wrapper undertakes two tasks. First, it needs to inform the
AutoMed Query Processor of the subset of IQL it is capable of translating into
OQL. As with all other AutoMed wrappers, we have developed a BNF grammar
specification from which a parser for the relevant subset of IQL is automatically
generated. The AutoMed-DQP wrapper translates IQL comprehensions with one
level of nesting (in accordance with the OQL queries supported by OGSA-DQP).

The AutoMed-DQP wrapper is also responsible for making interactions with
OGSA-DQP transparent to the remainder of the AutoMed infrastructure. On
receiving an IQL query, the wrapper first translates it into the equivalent OQL
query. The OQL query is then sent to OGSA-DQP for evaluation. The reply
from OGSA-DQP is in the form of an XML Response Document containing the
query results. The AutoMed-DQP wrapper translates this document into the
IQL type system, and returns the result to AutoMed’s Evaluator component.

5 Related Work

The importance of data integration in the life sciences has resulted in diverse
technical approaches being followed. In many of these there is little support pro-
vided by the infrastructure for resolving schematic heterogeneities. For example,
workflow systems enable requests to be formed that both access data resources
and invoke analyses on the values retrieved (e.g. [3,17]). However, many bioin-
formatics web services take and return formatted strings that require custom
transformation operations to be developed for converting data between formats.



16 L. Zamboulis et al.

Perhaps the most widely used data integration system in bioinformatics is SRS
[22]. However, like workflow systems, it principally supports storage and access
to entries from data resources that started out as formatted textual documents,
and the principal mode of access involves navigation between these documents,
rather than querying an integrated schema. As such, both of the above ap-
proaches make visible the sources from which data is derived and preserve at
least some aspects of the source data format.

In approaches building on distributed database technology, there is a ten-
dency to construct views over the underlying data resources, thus hiding schematic
heterogeneities from users. In distributed query processing systems that have
been designed for or used in bioinformatics, such as DiscoveryLink [11] or Kleisli
[7], existing databases or file-based resources are wrapped, and views can be
constructed over the wrapped sources using the GAV approach. As such, declar-
ative techniques can be used to provide a more uniform representation of the
data in a domain, although with the maintenance challenges widely associated
with GAV. There have also been attempts to support querying over domain
models expressed as biological ontologies, as in Tambis [10], but again the global
schema either directly reflects the structure of the underlying resources or defines
the global model using GAV.

Where data is to be subject to intensive integrated analysis, the warehousing
approach has also been popular in bioinformatics (e.g. [8,20]). However, the
population and maintenance of a centralised warehouse is often laborious, due
to inconsistencies between different data sources, naming schemes, etc. However,
where data is obtained from databases, these can use queries to populate the
warehouse model, as in GAV, or make use of technologies such as AutoMed, as
in BioMap [13].

In proteomics, although there are many resources that integrate data about
proteins (e.g. [19]), the emergence of databases on experimental proteomics,
capturing data from experiments on protein separation and identification, is very
recent. As such, we know of no previous work that seeks to support access to
multiple proteomics databases, as described here. Furthermore, as the schemas
of the databases to be integrated overlap significantly, fine-grained resolution of
schema conflicts is crucial to the provision of an effective integration strategy. In
essence, in the approach described in this paper, OGSA-DQP provides a query-
oriented middleware analogous to that provided by DiscoveryLink or Kleisli, and
AutoMed is used to resolve the heterogeneities in the schemas of the sources.
We are not aware of a similar approach elsewhere in the life sciences.

6 Conclusions

We have presented an architecture combining Grid data querying (OGSA-DAI/
DQP) and data integration (AutoMed) software tools which enables distributed
query processing together with the resolution of semantic heterogeneity over au-
tonomous data resources. We have presented results within the ISPIDER project
of integrating autonomous resources reflecting various proteomics domains and



Data Access and Integration in the ISPIDER Proteomics Grid 17

representations thereof. From a biology viewpoint, the final ISPIDER platform
will provide researchers with more information than any of the resources alone,
so allowing them to perform analyses that were previously prohibitively difficult
or impossible. This integration process both builds on and provides impetus to
the development of data standards in the proteomics and related domains.

Additional global schemas may be created as resources holding information
relevant to, but disjoint from, the initial global schema are integrated within the
ISPIDER platform. To enable querying across such schemas, a global ‘super-
schema’ could then be created. This methodology exemplifies the flexibility and
scalability of AutoMed’s transformation-based approach which also provides the
basis for materialised as well as virtual data integration and tracking data prove-
nance. These facilities too are being pursued within the ISPIDER project.

Beyond data integration, the ISPIDER data sources offer a number of web
services to the outside world, performing tasks ranging from simple data re-
trieval, to significantly more complex operations. We are using Taverna17, part
of the myGrid18 middleware, to enable users to construct complex analysis work-
flows from the available web services. We are currently investigating the inter-
operation of AutoMed with Taverna for integrating heterogeneous web services.

We are currently evaluating our system in terms of query processing and are
considering extensions to the LogicalOptimiser of the AQP as well as to the OQL
subset supported by OGSA-DQP; this will enable the translation of larger IQL
queries into OQL, which we expect will offer a notable performance boost.

Acknowledgements. The work presented in this paper was funded by a grant
from the BBSRC. We are also grateful to Steven Lynden for his help with the
OGSA-DQP system, Thomas McLaughlin and Julian Selley for their help in
defining the correspondences between the database schemas, and Robert Stevens
and Carole Goble for their comments and advice.

References

1. M. N. Alpdemir, A. Mukherjee, N.W. Paton, P.Watson, A. A. Fernandes,
A. Gounaris, and J. Smith. Service-based distributed querying on the Grid. In
Proc. of the 1st Int. Conf. on Service Oriented Computing, pages 467–482, 2003.

2. M. Antonioletti et al. The design and implementation of grid database services in
OGSA-DAI. Concurrency - Practice and Experience, 17(2-4):357–376, 2005.

3. S. Bowers and B. Ludäscher. An ontology-driven framework for data transforma-
tion in scientific workflows. In DILS, pages 1–16. Springer, 2004.

4. P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension syntax.
SIGMOD Record, 23(1):87–96, 1994.

5. R. G. G. Cattell and D. K. Barry. The Object Database Standard: ODMG 3.0.
Morgan Kaufmann, 2000.

6. R. Craig, J. P. Cortens, and R. C. Beavis. Open source system for analyzing,
validating, and storing protein identification data. Journal of Proteome Research,
3(6), 2004.

17 See http://taverna.sourceforge.net
18 See http://www.mygrid.org.uk



18 L. Zamboulis et al.

7. S.B. Davidson, C. Overton, V. Tannen, and L. Wong. BioKleisli: A Digital Library
for Biomedical Researchers. Journal of Digital Libraries, 1(1):36–53, Nov 1997.

8. S. Durinck, Y. Moreau, A. Kasprzyk, S. Davis, B. De Moor, A. Brazma, and
W. Huber. Biomart and bioconductor: a powerful link between biological databases
and microarray data analysis. Bioinformatics, 21(16):3439–3440, 2005.

9. K. Garwood et al. Pedro: A database for storing, searching and disseminating
experimental proteomics data. BMC Genomics, 5, 2004.

10. C. A. Goble, R. Stevens, G. Ng, S. Bechhofer, N. W. Paton, P. G. Baker, M. Peim,
and A. Brass. Transparent access to multiple bioinformatics information sources.
IBM Systems Journal, 40(2):532–551, 2001.

11. L. M. Haas, P. M. Schwarz, P. Kodali, E. Kotlar, J. E. Rice, and W. C. Swope.
Discoverylink: A system for integrated access to life sciences data sources. IBM
Systems Journal, 40(2):489–511, 2001.

12. E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL queries and migrat-
ing data in the AutoMed toolkit. AutoMed Tech. Rep. 20, June 2003.

13. M. Maibaum, L. Zamboulis, G. Rimon, N. Martin, and A. Poulovassilis. Cluster
based integration of heterogeneous biological databases using the AutoMed toolkit.
In Proc. Data Integration for the Life Sciences 2005 (DILS’05), pages 191–207.

14. P. McBrien and A.Poulovassilis. Defining peer-to-peer data integration using both
as view rules. In Proc. Workshop on Databases, Information Systems and Peer-to-
Peer Computing (at VLDB’03), Berlin, 2003.

15. P. McBrien and A. Poulovassilis. Data integration by bi-directional schema trans-
formation rules. In Proc. ICDE’03, pages 227–238, 2003.

16. T. McLaughlin, J. A. Siepen, J. Selley, J. A. Lynch, K. W. Lau, H. Yin, S. J.
Gaskell, and S. J. Hubbard. Pepseeker: a database of proteome peptide identifica-
tions for investigating fragmentation patterns. Nucleic Acids Research, 34, 2006.

17. T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool
for the composition and enactment of bioinformatics workflows. Bioinformatics,
20(17):3045–3054, 2004.

18. D.N. Perkins, D.J. Pappin, D.M. Creasy, and J.S. Cottrell. Probability-based
protein identification by searching sequence databases using mass spectrometry
data. Electrophoresis, 20(18), 1999.

19. M. Pruess, P. Kersey, and R. Apweiler. The integr8 project - a resource for genomic
and proteomic data. In Silico Biology, 5, 2004.

20. S.P. Shah, Y. Huang, Y. Xu, M.M.S. Yuen, J. Ling, and B.F.F. Ouellette. Atlas –
a data warehouse for integrative bioinformatics. BMC Bioinformatics, 6(81), 2005.

21. J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. A. A. Fernandes, and R. Sakel-
lariou. Distributed query processing on the Grid. In Proc. Grid Computing, pages
279–290, 2002.

22. E. M. Zdobnov, R. Lopez, R. Apweiler, and T. Etzold. The EBI SRS server-recent
developments. Bioinformatics, 18(2):368–373, 2002.



A Cell-Cycle Knowledge Integration Framework
Research Paper

Erick Antezana, Elena Tsiporkova, Vladimir Mironov, and Martin Kuiper

Dept. of Plant Systems Biology. Flanders Interuniversity Institute for
Biotechnology/Ghent University. Technologiepark 927, B-9052 Ghent Belgium

{erant, eltsi, vlmir, makui}@psb.ugent.be
http://www.psb.ugent.be/cbd/

Abstract. The goal of the EU FP6 project DIAMONDS 1 is to build a
computational platform for studying the cell-cycle regulation process in
several different (model) organisms (S. cerevisiae, S. pombe, A. thaliana
and human). This platform will enable wet-lab biologists to use a systems
biology approach encompassing data integration, modeling and simula-
tion, thereby supporting analysis and interpretation of biochemical path-
ways involved in the cell cycle. To facilitate the computational handling
of cell-cycle specific knowledge a detailed cell-cycle ontology is essential.
The currently existing cell-cycle branch of the Gene Ontology (GO) pro-
vides only a static view and it is not rich enough to support in-depth
cell-cycle studies.

In this work, an enhanced Cell-Cycle Ontology (CCO) is proposed
as an extension to existing GO. Besides the classical add-ons given by
an ontology (data repository, knowledge sharing, validation, annotation,
and so on), CCO is intended to further evolve into a knowledge-based
system that provides reasoning services oriented to hypotheses evaluation
in the context of cell-cycle studies. A data integration pipeline prototype,
covering the entire life cycle of the knowledge base, is presented. Concrete
problems and initial results related to the implementation of automatic
format mappings between ontologies and inconsistency checking issues
are discussed in detail.

1 Introduction

The amount of data generated in biological experiments continues to grow expo-
nentially. The shortage of proper approaches or tools for analyzing this informa-
tion has created a gap between raw data and knowledge. To make matters worse,
the lack of a structured documentation of knowledge leaves much of the infor-
mation extracted from these raw data unused. Moreover, differences in the used
technical languages (synonymy and polysemy) have complicated the analysis and
interpretation of the data. Currently, there are several efforts for standardizing
the used vocabulary. Most importantly, the Gene Ontology (GO) Consortium [9]
has been providing a controlled set of terms for gene products whereas the Open

1 http://www.sbcellcycle.org

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 19–34, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



20 E. Antezana et al.

Biomedical Ontology(OBO)2 umbrella has been collecting the most representa-
tive ontologies in biological and medical domains. Ontologies clarify scientific
discussions providing a shared vocabulary for biologists to communicate their
results effectively, explore data and extend scientific investigations. Ontologies
also facilitate the implementation of computational approaches and systems to
perform data exploration, inference and mining [5].

The goal of the EU FP6 project DIAMONDS is to build and use a sys-
tems biology platform of tools to study the cell-cycle process in several different
model organisms (S. cerevisiae, S. pombe, A. thaliana and human). Data and
information integration and retrieval is essential for studying gene networks, and
although several solutions for this already exist (e.g. BioRS3, SRS4; also some
ontology-based solutions like TAMBIS [25] and caBIO [8]. A particular challenge
is the development of a specific cell-cycle ontology (CCO), as this is relatively
poorly developed at present. A rich CCO will be a first step towards more pow-
erful computational approaches to exploit such developed ontology. The process
of cell division, or cell cycle, is one of the most fundamental and highly conserved
processes in eukaryotic systems. Its cyclical nature makes it a challenging phe-
nomenon for modeling and simulation and a better understanding of it provides
significant knowledge for growth in general and human health in particular (can-
cer related aspects, proliferation disorders issues, prospective therapeutic targets
basis and so forth [14], [29]). The available knowledge contained in the cell-cycle
literature, however, resides in a format that does not enable straightforward
computational processing and consequently, searching and manipulating this in-
formation is limited. Moreover, reusing and sharing cell-cycle related data is not
facilitated by actual media. Queries within a document are usually limited to
simple keyword searches. Therefore, relations between concepts within a docu-
ment cannot be found unambiguously. For example, two instances, protein X and
protein Y can be easily identified by a keyword search. However, unless biologists
read at least the text sections comprising those concepts within the document,
they will not be able to determine whether these two proteins are related to
each other, how this relationship is defined, or in what particular phase of the
cell-cycle this relationship is important.

We propose here an ontological paradigm that enables to capture the se-
mantics, temporal aspects and dynamics of the cell cycle regulatory process.
Currently, the cell-cycle branch from the bio-ontology GO is too basic to ade-
quately describe the cell-cycle, as it only supports a static view of this process.
GO is based on the annotation of gene products (either RNA or proteins). Each
of these products may in fact play a role in many molecular processes. Unfortu-
nately, in GO only the prospective activity of a given process is defined without
much specification of where or when this process may take place. For particular
applications, such as regulatory network modeling and simulation, it is essen-
tial to access specific temporal annotations that capture the dynamics of the

2 http://obo.sourceforge.net/cgi-bin/table.cgi
3 http://www.biomax.de/products/biors.php
4 http://www.biowisdom.com/solutions srs.htm



A Cell-Cycle Knowledge Integration Framework 21

system. Only two types of relationships are at present considered in GO: sub-
sumption (is a) and partonomic inclusion (part of ) (for a formal definition of an
ontology structure, refer to the Appendix), which poses a significant limitation
for expressing the semantics of a dynamical system. In addition, GO treats its
three structured networks as separate ontologies, i.e. no ontological relations are
defined among them. Besides, GO suffers of inconsistent treatment of relations
such as is a. In spite of these problems, GO has gained a wide appreciation in
the life sciences.

The CCO that we propose here belongs to the domain specific ontology type
according to the definition given in [12]. As argued in [19], the development of an
ontology of a given domain is frequently not a goal in itself, it rather constitutes
a skeleton for a set of data that together form a knowledge base. We have set out
to build a knowledge-based system founded on CCO, for an in-depth analysis of
cell-cycle control mechanisms.

There are several prospective resources that a cell-cycle knowledge base can
draw on. Among them, existing ontologies such as GO and some of the ones
listed at the OBO repository are key. In addition, databases holding data about
gene/protein interactions, such as Reactome [15], BIND [2] and IntAct [13], are
also considered. Cell-cycle “slims” from Reactome will provide the first setup.
Furthermore, data produced by the DIAMONDS consortium will also feed the
repository (E.g. dedicated curation of literature information, annotation infor-
mation on protein features, protein-protein interaction data).

OWL [21] is a web ontology language that is recommended by the W3C5

consortium for semantic web applications. OWL comes in three flavors: OWL
Full, OWL-DL and OWL Light, ranked in order of their expressivity. For CCO
we chose OWL-DL, because of the reasoning capabilities versus computational
cost ratio.

Reasoning through a logic approach is best able to deal with the constraints
of the gathered knowledge. We have chosen description logics [1] because of its
expression power, a well developed theory and consistent semantics. Reasoning
packages, such as RACER6, KAON27, Pellet8 and/or FaCT++9 are being used
for classifying, checking instance consistency and making implicit information
explicit. In addition, such reasoning can reveal inconsistencies, hidden dependen-
cies, redundancies and misclassifications. As a result, the CCO becomes more
robust.

2 Data Integration Pipeline

A formal specification of a data integration pipeline has been developed (see
Figure 1). This specification covers the entire life cycle including the development

5 http://www.w3.org/
6 http://www.racer-systems.com/index.phtml
7 http://kaon2.semanticweb.org/
8 http://www.mindswap.org/2003/pellet/index.shtml
9 http://owl.man.ac.uk/factplusplus/



22 E. Antezana et al.

GO

Merging

DC RO

GO_ID vs CCO_ID

pre_cco.obo pre_cco.owl

cco.owl cco.obo

Integrating

Maintaining

GO*

DC* RO*

cco.owl cco.obo

Annotation

Annotation*

Data sources
(Reactome, ...)

Life-cycle

Data inclusion

Set-up

GO_ID vs CCO_ID

Data sources*
(Reactome, ...)

Fig. 1. Data integration pipeline

of the knowledge base. It has three phases: a set-up, a data integration phase,
and a maintenance phase. A detailed description of these phases is presented
below.

2.1 Set-Up

In the initial phase, the ontology structure and its lexicon (for formal definitions,
refer to the Appendix) were engineered. The ontology structure core was based on
the GO cell-cycle branch, the Relations Ontology (RO) [24], and the Dublin Core
(DC)10 ontology. The integration pipeline has been implemented in PERL using
go-dev11 and XML::Parser12. In order to produce the CCO, ontology pruning
and preprocessing has also been done. Whereas this ontology structure has been
iteratively refined, changes can still be accommodated until a stable version of
10 http://www.dublincore.org/
11 http://www.godatabase.org/dev/doc/go-dev-doc.html
12 http://search.cpan.org/dist/XML-Parser/



A Cell-Cycle Knowledge Integration Framework 23

the whole system is reached. The output generated in this phase constitutes the
input for the data integration phase.

As the ontology is available in OBO and OWL formats, specific format con-
version tools were developed. The OBO format of the CCO is compliant with
the version 1.213 of the OBO format specification. Since the CCO’s ontology
structure and lexicon are based on the cell-cycle GO branch, an association ta-
ble (GO identifier versus CCO identifier) was defined. A CCO entry sample in
both OBO and OWL formats showing the correspondence between attributes
can be seen in Figure 2.

[Term]
id: CCO:P0000016
name: M phase of mitotic cell cycle
def: "Progression through M phase, the part of the mitotic cell cycle during which mitosis and cytokinesis
take place." [GOC:mah, ISBN:0815316194]
xref: GO:0000087
xref: Reactome:68886
relationship: part_of CCO:P0000037
is_a: CCO:P0000038
synonym: "M-phase of mitotic cell cycle" [] {scope="exact"}

<owl:Class rdf:ID="CCO_P0000016">
<rdfs:label xml:lang="en">M phase of mitotic cell cycle</rdfs:label>
<xref rdf:datatype="http://www.w3.org/2001/XMLSchema#string">GO:0000087</xref>
<xref rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Reactome:68886</xref>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Progression through M phase, the

part of the mitotic cell cycle during which mitosis and cytokinesis take place.</rdfs:comment>
<synonym rdf:datatype="http://www.w3.org/2001/XMLSchema#string">M-phase of mitotic cell cycle</synonym>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#part_of"/>
<owl:someValuesFrom rdf:resource="#CCO_P0000037"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#CCO_P0000038"/>
<owl:disjointWith rdf:resource="#CCO_P0000270"/>

</owl:Class>

Fig. 2. A CCO entry sample

2.2 Data Integration

Data coming from several different sources are being integrated into the knowl-
edge base structure. The main sources are the available gene association files14,
the cell-cycle related data from the Reactome knowledge base and the IntAct
database. The output of this phase provides the first release of the system.
Besides, cross-references to external public databases, such as UniProt [6] and
GenBank [7], will also be supplied in the future.

2.3 Maintenance

The system will support automatic data updates and facilitate targeted manual
checking to ensure its consistency. An automatic updating procedure is partially
implemented. This will guarantee that the working version of the CCO has the
latest data produced by the GO consortium with respect to the cell-cycle data.
The cell-cycle knowledge base specifies a given concrete domain state and as
13 http://www.godatabase.org/dev/doc/obo format spec.html
14 http://www.geneontology.org/GO.current.annotations.shtml



24 E. Antezana et al.

a result, the knowledge base should be constantly updated. In addition, the
ontology structure may also be extended and refined. Regarding the update
mechanism, the cutting-edge versions of the GO and RO ontologies are fetched
by the updating scripts from their version control systems. Then, the checked-
out files, in OBO format, are transformed into OWL format. Due to the fact that
the accession numbers should remain consistent from update to update, special
considerations are taken into account while updating the entries since some terms
may have been changed (see section 3.2 for more details). In addition, separate
files containing the CCO accession numbers and terms are kept in similar ways
as the GO distribution is provided. On the other hand, a version control system
has been set up for CCO since the initial results were obtained. The current
CCO version as well as previous ones may be retrieved from that repository. In
the near future, a web site will provide access to the initial and experimental
CCO pre-releases as well as the stable releases.

3 Towards a Formal Cell-Cycle Ontology

Information retrieval and management is enhanced by means of ontologies. The
next generation of the web, the semantic web [4], will provide to users and
machines a common exchange language avoiding irrelevant search results and
increasing the quality of the result searching hits. Such a common and formal
language will assist in the maintenance of the daily evolution of the knowledge
by checking the incongruities that might arise from periodic updates.

3.1 Motivation and Design Principles

In order to develop an efficient ontology, careful consideration should be given
to the purpose that it should serve, and the scientific community that will use it.
The main purpose for building the CCO is to capture the semantics of the cell-
cycle regulatory process, especially the dynamic aspects of the concepts and their
interrelations, and to promote sharing, reuse and enable better computational
integration with existing resources. The prospective audience comprises both
wet-lab biologists and computational biologists who might have a particular
interest in cell-cycle elucidation. Some motivating scenarios or use-cases that
have shaped the CCO development are shown in Table 1.

The scope of the ontological concepts ranges from biological processes, cel-
lular components, and molecular functions. Some competency questions that
should be answered by the system are summarized in Table 2. Those questions
are expressed in natural language and are rather informal. The ontology can be
valued by its capability to answer those types of questions and by the extent that
it provides support for the motivating scenarios. Those questions correspond to
the functional ontology requirements, that is, the system behavior (functions or
services).

The following rules, summarized from [23], have been taken into account
while engineering the CCO:



A Cell-Cycle Knowledge Integration Framework 25

Table 1. Some CCO motivating scenarios

1. A molecular biologist is interested in knowing the
components that interact during the cell-cycle process or in a
given event as well as the roles that each component play.
He/she is also interested in finding out the prospective
components that play a role in a given cell-cycle phase.
2. In the case of a bioinformatician, it might be interesting
to know the cross-references from one component, that plays a
given role in the cell-cycle process, to some external data resources.
3. General audience will be interested in finding out all the
fundamental components involved in the cell-cycle process. Besides,
they will also want to find some synonyms for a given concept.

Table 2. Competency questions

1 What is a X-type CDK?
2 What is a Y-type Cyclin?
3 In what events is CDK Z involved?
4 In what events is Rb involved?
5 Which CDKs are involved in the endoreduplication process?
6 Which proteins are phosphorylated by kinase X?
7 Which CDK pertains to [G1—S—G2—M] phase?

– Univocity: Terms should have the same meanings on every occasion of use.
– Positivity: Terms should designate genuine classes (do not use for instance

non-inhibitor).
– Objectivity: Terms should designate biological natural kinds (do not use for

instance terms such as unknown).
– Single Inheritance: No class in a classification hierarchy should have more

than one is a parent on the immediate higher level.
– Intelligibility of Definitions: The terms used in a definition should be simpler

than the term to be defined.
– Basis in Reality: The quality of the ontologies depends on the degree to

which they represent a certain portion of reality.

Those ontology principles are primarily considered as development guidelines
since some rules could limit the representation of real-world situations, e.g. mul-
tiple inheritance.

3.2 Development Issues

There are many proposals for ontology development [10]. However, none of them
is widely accepted and many of the ontology engineers combine at least some
of these methods. Among the most representative methods we can identify the
following: Enterprise methodology [27], the TOVE methodology [11], the Unified



26 E. Antezana et al.

methodology [28] and METHONTOLOGY [22]. All of them provide guidelines
for developing ontologies and most of them consider the following steps:

– choosing an ontology language,
– choosing a development tool,
– acquire domain knowledge,
– reuse ontologies.

In general terms, most of the ontology development methods consider an informal
phase, in which some ontology sketches are devised, and a formal phase, in which
the ontology is formalized using an ontology language and specific development
tools. Capturing knowledge is an expensive and arduous task. Protégé15 has been
used as a developing environment for our CCO. It provides a very user-friendly
graphical interface and an extensible architecture based on plug-ins.

GO and the RO have been used as core ontologies for developing the CCO.
All the processes from GO under the cell-cycle (GO:0007049) term were taken
into account, while RO was completely imported. Thus, 304 terms were adopted
from GO and all the 15 relations from RO. The CCO is updated daily and
checked using data from GO.

Further enrichment of the CCO is required to merge the relations from RO
and the ones provided by Reactome since there is a gap between the top-level
relations from RO and the very specific ones from Reactome. For that sake, a
mapping and association layer has been implemented. Based on this first skeleton
this endeavor has now reached an initial stable state. Additional efforts will
consider the integration of instances into a knowledge-based system that will
provide a means for hypotheses evaluation.

The CCO is presently available in two formats most widely used by the bio-
community: OBO and OWL. The CCO has an average depth of about 3 nodes.
Although the mapping between the OBO and OWL (and vice versa) is not
totally biunivocal (one-to-one correspondence), all the data has been preserved,
i.e., all the terms and relations with their attributes were translated and when
necessary some workarounds were implemented for the sake of completeness. The
framework of the data integration is shown in Figure 3.

Knowledge Base Structure

Knowledge Base Lexicon

Ontology Structure

Ontology Lexicon

InstancesClasses Relations

Axioms

Fig. 3. Data integration framework

15 http://protege.stanford.edu/



A Cell-Cycle Knowledge Integration Framework 27

Classes, definitions, their references, and their relations with other classes
have been treated as they appeared in their original resources. The DC ontology
is being used for coding the terms references. Besides, a number of conventions
have been adopted from [26], [3] and GO for identifying the terms within CCO.
Each concept has a unique identifier of the form CCO:cnnnnnnn, where CCO
indicates that the concept belongs to the CCO ontology (CCO is also known as
the ontology namespace), c denotes de sub-namespace, and nnnnnnn consists
of 7 numerical characters as shown in Table 3.

Table 3. CCO accession number. The first character denotes the type of term: C
stands for cellular component, F for molecular function and P for biological process.

c n n n n n n n

[C,F,P] [0-9] [0-9] [0-9] [0-9] [0-9] [0-9] [0-9]

In order to maintain the accession numbers consistency as much as possible,
the following four situations were considered:

1. A totally new added term implies a new accession number.
2. A merge occurs when two or more terms become a new term. The old ac-

cession numbers are copied as secondary accession numbers into the new
term.

3. A split occurs when one term turns into two or more terms. The original
accession numbers are kept in all the derived terms and a new primary
accession number is added to each new term.

4. An accession number is dropped only when the data to which it was assigned
have been completely removed from the ontology.

3.3 Formats Mapping

This section presents the mapping aspects that were taken into account while
engineering the ontology structure. Previous work in this respect has already
highlighted16 many of the problems that we have faced here. The main problem
is the insufficiency of information to get an OWL representation from an OBO
one. The mapping to OWL has some caveats since currently there are some ele-
ments in OWL without any equivalent in OBO. For example, the existencial and
universal restrictions cannot explicitly be represented in OBO. Consequently, we
assume that all of them are existencial restrictions. Although nowadays no OBO
ontology uses either union or intersection constructions, our conversion tools

16 http://www.godatabase.org/dev/doc/mapping-obo-to-owl.html,
http://b-src.cbrc.jp/source/go-dev/doc/mapping-obo-to-owl.html,
http://gong.man.ac.uk/,
http://www.aiai.ed.ac.uk/resources/go/,
http://bioinfo.unice.fr/equipe/Claude.Pasquier/biowl/index.html



28 E. Antezana et al.

Table 4. Mapping of OBO and OWL terms. NDY stands for not defined yet.

OBO keyword OWL keyword OWL element type

[Term] owl:Class Class description
id rdf:ID Class description

name rdfs:label rdf:Property
is anonymous NDY NDY

alt id NDY NDY
def rdfs:comment rdf:Property

comment NDY NDY
subset NDY NDY

synonym synonym owl:DataTypeProperty, owl:AnnotationProperty
xref xref owl:DataTypeProperty, owl:AnnotationProperty
is a rdfs:subClassOf owl:ObjectProperty

intersection of owl:intersectionOf Class description
union of owl:unionOf Class description

disjoint of owl:disjointWith Class axiom
relationship NDY NDY
is obsolete owl:DeprecatedClass Version information

replaced by NDY NDY
consider owl:equivalentClass Class axiom

Table 5. Mapping among the OBO and OWL relationships. NDY stands for not
defined yet.

OBO keyword OWL keyword

[Typedef] owl:ObjectProperty
builtin NDY

comment NDY
def rdfs:comment

exact synonym synonym (workaround)
id rdf:id

inverse of owl:inverseOf
is a rdfs:subClassOf

is anti symmetric is anti symmetric (workaround)
is reflexive is reflexive (workaround)

is transitive rdf:type (TransitiveProperty)
NDY rdf:type (SymmetricProperty)
name rdfs:label (string)

xref analog NDY

support them. Moreover, some terms do not have any definition and in conse-
quence no references (no dbxref definition).



A Cell-Cycle Knowledge Integration Framework 29

A mapping between the OBO specification and the OWL representation of
the CCO is shown in Tables 4 and 5. As can be observed, there are some el-
ements that have been mapped in a natural way (e.g. rdfs:label), while some
other elements do not have a direct or defined mapping and some non-trivial
approaches were taken to bypass this problem. The missing properties in OWL
relations are: reflexivity, asymmetry, antisymmetry, intransitivy and partonomic
relationships.

The mapping that we introduce is still in an experimental, non-final phase.
There are several aspects that will be adapted after some pending decisions
are taken. A stable level will be achieved once the OBO specification reaches a
sufficient maturity stage. Moreover, because of the OBO metadata, the CCO has
adopted OWL Full for its representation. Consequently, an alternative OWL-
DL version will additionally become available. The OWL syntax of the OWL
generated file is validated automatically by the format conversion script using
vowlidator17 .

3.4 Handling of Inconsistencies

As stated above, one added value of a description logics approach embedded
in the skeleton of the ontology structure is to allow automatic detection and
handling of inconsistencies and misclassifications. Thus reasoning environments
as RACER can be employed for checking the validity of some of the design
principles of CCO, mentioned in Section 3.1. For instance, as already indicated
in [23], the way GO uses the is a relation may lead to a violation of the single
inheritance principle. After loading the CCO into Protégé (with the Protégé
OWL plugin [16]) and adding simple disjointness constraints to some of the
CCO classes a certain number of this type of inconsistencies (32 in total which
represents 10% of the entire CCO) have been detected by RACER. There are
a number of relationships that should have been annotated as part of instead
of is a and vice versa. A sample of this analysis is shown in Figure 4 and the
corresponding GO cross-references are shown in Table 6. The centriole is an
integral part of the centrosome, the microtubule organizing centre of the cell.
Accordingly, the term centriole replication in GO is linked to its parent term
centrosome duplication via a part of relationship. Then, in order to be consistent
the terms regulation of centriole replication and negative regulation of centriole
replication should be related to their parent terms regulation of centrosome cycle
and negative regulation of centrosome cycle by part of relationships as well.
Indeed, the inconsistency problem was solved by replacing the is a with part of
relationship for these two pairs of terms in accordance to the True Path Rule18.

We are presently investigating different approaches to solve these problems so
that the divergence against the main ontology source (GO) is minimal. Further-
more, as stated in [23], the part of relation should be specialized using spatial
and temporal relations [24] to solve this type of inconsistencies.

17 http://projects.semwebcentral.org/projects/vowlidator/
18 http://www.geneontology.org/GO.usage.shtml#truePathRule



30 E. Antezana et al.

A major factor for managing the system will be the extent to which it diverges
from its main sources. To minimize problems we will seek dialogue with the GO
consortium and provide feedback.

CCO:P0000228

CCO:P0000222

s4

CCO:P0000221

s3

CCO:P0000227

s2s1

CCO:P0000096

p2

CCO:P0000056

p1

CCO:P0000228

CCO:P0000222

p4

CCO:P0000221

s3

CCO:P0000227

s2p3

CCO:P0000096

p2

CCO:P0000056

p1

Fig. 4. Comparison of two sample class sub-hierarchies. Let O be an ontology struc-
ture, where {s1, s2, s3, s4} ⊂ S and {p1, p2} ⊂ P and O′, where {s2, s3} ⊂ S ′ and
{p1, p2, p3, p4} ⊂ P ′. The ontology O, on the left, has an inconsistent relation s4. On
the right, the ontology O′ is shown with a different, supposedly correct semantics.

Table 6. CCO ID and GO ID for the sample shown in Figure 4

CCO ID GO ID Term

CCO:P0000056 GO:0007049 cell cycle
CCO:P0000096 GO:0007098 centrosome cycle
CCO:P0000227 GO:0046605 regulation of centrosome cycle
CCO:P0000221 GO:0046599 regulation of centriole replication
CCO:P0000228 GO:0046606 negative regulation of centrosome cycle
CCO:P0000222 GO:0046600 negative regulation of centriole replication

4 Conclusions and Future Work

The amount of biomedical knowledge is becoming too large for traditional local
approaches. Ontologies can increase the likelihood that such knowledge will be
found and used by making the data easier to query and transform. A data in-
tegration pipeline detailing the issues of creating, updating and maintaining a
cell-cycle knowledge base has been introduced. The formalization towards a de-
scription logics framework is a multi-staged and iterative process. The principal
contributions of the knowledge base are:

– facilitate the communication between communities working on the cell-cycle
process by providing a lingua franca or common terminology;

– saving time and effort by reusing the CCO and integrating it into related
applications or systems;



A Cell-Cycle Knowledge Integration Framework 31

– assist in application tasks such as knowledge acquisition, where semantic
representation plays an important role;

– serving as a data repository.

The CCO is expected to be mainly used in the bioinformatics field and naturally,
most of the feedback is expected to happen at that level. On the other hand,
it is worth mentioning that the role of the CCO is not to compete against the
cell-cycle data from GO. Rather, it is intended to complement GO by providing
additional structure for the formalization process of the available knowledge in
the cell-cycle field. The work so far has confirmed the existing integration ob-
stacles due to the diversity of data formats and lack of formalization approaches
as well as the trade-offs that are common in biological sciences.

The knowledge will be weighted or scored according to some defined evi-
dence codes expressing the support media similar to those implemented in GO
(experimental, electronically inferred, and so forth). A graphical user interface
is also foreseen. The ultimate aim of the project is to support hypothesis evalu-
ation about cell-cycle regulation issues. These hypotheses will be evaluated for
consistency against the existing knowledge. The end product intends to include
several intermediate milestones:

– An improved cell-cycle ontology, built on the existing ontology from GO
and complemented with the temporal/dynamical aspects of the process. The
three GO ontologies altogether supply an initial temporal framework for
CCO by providing the cellular components (what/where), molecular func-
tions (what) and biological processes (how/when). We are currently inves-
tigating approaches for connecting these three ontologies and representing
knowledge such as for example CDK A (what) is located in Cytoplasm
(where) during Cytokinesis (when).

– A knowledge base holding the CCO as the core structure and data taken from
Reactome and some other prospective resources as well as data produced by
the DIAMONDS consortium, which is expected to boost the initial evolution
of the system by providing data.

– A query [32] system for hypotheses validation, annotation assistance.
– A user interface providing a user-friendly environment for interacting with

the system, creating queries and input data, annotation and so forth.

Besides the classical benefits provided by an ontology (data repository, knowl-
edge sharing, validation, annotation, and so on), we aim to build a knowledge-
based system that provides reasoning services oriented to hypotheses evaluation
in the context of cell-cycle analysis. Consistency checking will further facilitate
and improve some tasks done by annotation teams.

Finally, once a stable version of the ontology is released, the cell-cycle com-
munity will be invited to contribute to this effort and enhance the system.

Aknowledgements. This work was financially supported by the EU Framework
programme for research, contract number LSHG-CT-2004-512143.



32 E. Antezana et al.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.(eds.):
The Description Logic Handbook. Theory, Implementation and Applications. Cam-
bridge University Press (2003)

2. Bader, G.D., Betel, D., Hogue, C.W.V.: BIND: the Biomolecular Interaction Net-
work Database. Nucleic Acids Res, (2003) 31 1 248-250

3. Bard, J., Rhee, S.Y., Ashburner, M.: An ontology for cell types. Genome Biology,
(2005) 6 R21

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(May 2001)

5. Blake, J.: Bio-ontologies-fast and furious. Nature Biotechnology, (2004) 22 773-774
6. Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S.,

Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A.,
ODonovan, C., Redaschi, N., Yeh, L.S.: The universal protein resource (Uniprot).
Nucleic Acids Res., (2005) 33 Database issue D154D159

7. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L.: Gen-
bank. Nucleic Acids Res., (2005) 33 Database issue D34D38

8. Covitz, P.A., Hartel, F., Schaefer, C., De Coronado, S., Fragoso, G., Sahni, H.,
Gustafson, S., Buetow, K.H. caCORE: A common infrastructure for cancer infor-
matics. Bioinformatics, (2003) 19 18 2404-2412

9. Gene Ontology Consortium.: The Gene Ontology (GO) database and informatics
resource. Nucleic Acids Res., (2004) 32 Database issue D258-D261

10. Gomez-Perez, A., Corcho, O., Fernandez-Lopez, M.: Ontological Engineering : with
examples from the areas of Knowledge Management, e-Commerce and the Semantic
Web. Springer (2004)

11. Gruninger, M., Fox M.S.: Methodology for the Design and Evaluation of Ontologies.
Workshop on Basic Ontological Issues in Knowledge Sharing, IJCAI-95 (Montreal)
(1995)

12. Guarino, N.: Formal Ontology In Information Systems. In Proceedings of FOIS
’98, Trento, Italy 6-8 June. IOS Press (1998)

13. Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Or-
chard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., Margalit, H.,
Armstrong, J., Bairoch, A., Cesareni, G., Sherman, D., Apweiler, R.: IntAct:
an open source molecular interaction database. Nucleic Acids Res., (2004) 32
Database issue D452-D455

14. Inze, D.: Why should we study the plant cell cycle? J. Exp. Bot., (2003) 54 385
11251126

15. Joshi-Tope, G., Gillespie, M., Vastrik, I., DEustachio, P., Schmidt, E., de Bono, B.,
Jassal, B., Gopinath, G.R., Wu, G.R., Matthews, L., Lewis, S., Birney, E., Stein,
L.: Reactome: a knowledgebase of biological pathways. Nucleic Acids Res., (2005)
33 Database issue D428D432

16. Knublauch, H., Dameron, O., Mussen, M.A.: Weaving the biomedical semantic web
with the Protege OWL plugin (2004)

17. Maedche, A.: Ontology Learning For The Semantic Web. Norwell, Massachusetts,
Kluwer Academic Publishers (2003)

18. Maedche, A., Volz R.: The Ontology Extraction & Maintenance Framework Text-
To-Onto. In Proceedings of the ICDM-2001 Workshop on the integration of Data
Mining and Knowledge Management, San Jose, USA, November, 31 (2001)



A Cell-Cycle Knowledge Integration Framework 33

19. Noy, N.F., McGuiness, D.L.: Ontology development 101: A guide to creating your
first ontology. Technical Report SMI-2001-0880, Stanford University, SMI technical
report (2001)

20. Ogden, C., Richards, I.: The Meaning of Meaning: A Study of the Influence of
Language upon Thought and of the Science of Symbolism. Routledge & Kegan
Paul Ltd., London, 10 edition (1923)

21. McGuinness, D.L., van Harmelen, F.(eds.): OWL Web Ontology Language
Overview. http://www.w3.org/TR/2004/REC-owl-features-20040210/

22. Lopez, M.F., Perez, A.G., Juristo, N.: METHONTOLOGY: From Ontological Art
Towards Ontological Engineering. Workshop on Ontological Engineering. Spring
Symposium Series: Stanford, USA (1997)

23. Smith, B., Kohler, J., Kumar, A.: On the application of formal principles to life
science data: A case study in the Gene Ontology. Database Integration in the Life
Sciences (DILS), Berlin: Springer (2004)

24. Smith, B., Ceusters, W., Klagges, B., Kohler, J., Kumar, A., Lomax, J., Mungall,
C., Neuhaus, F., Rector, A.L., Rosse, C.: Relations in biomedical ontologies.
Genome Biology, (2005) 6 R46

25. Stevens, R., Baker, P., Bechhofer, S., Ng, G., Jacoby, A., Paton, NW., Goble,
CA., Brass, A. TAMBIS: transparent access to multiple bioinformatics information
sources. Bioinformatics, (2000) 16 2 184-185

26. Thompson, J.D., Holbrook, S.R., Katoh, K., Koehl, K., Moras, D., Westhof, E.,
Poch, O.: MAO: a multiple alignment ontology for nucleic acid and protein se-
quences. Nucleic Acids Res., (2005) 33 13 4164-4171

27. Uschold, M., King, M. Towards Methodology for Building Ontologies. Workshop on
Basic Ontological Issues in Knowledge Sharing, held in conjunction with IJCAI-95
(1995)

28. Uschold, M., Gruninger, M. Ontologies: Principles, methods and applications.
Knowledge Engineering Review, (1996) 11 2 93-136

29. Vermeulen, K., Van Bockstaele, D.R., Berneman, Z.N.: The cell cycle: a review of
regulation, deregulation and therapeutic targets in cancer. Cell Prolif., (2003) 36
3 131149

30. Yeh, I., Karp, P.D., Noy, N.F., Altman, R.B.: Knowledge acquisition, consistency
checking and concurrency control for Gene Ontology (GO). Bioinformatics, (2003)
19 2 241-248

31. Yu, A.C.: Methods in biomedical ontology. Journal of Biomedical Informatics,
(2005) 78 315-333

32. Zhang, Z., Miller, J.A.: Ontology query languages for the semantic web. A perfor-
mance evaluation (2004)

Appendix: Formal Definitions of Ontology and Knowledge
Base Structure

The following formal definitions, which are introduced for showing some frame-
work elements, have been adapted from [17], which in its turn has its mainstay
in the Ogden-Richards’ semiotic triangle [20].

An ontology structure is a 6-tuple: O = {C, R, SC , PC , ρ, AO}, where:

– C and R are two disjoint sets whose elements are called concepts and relations
respectively.



34 E. Antezana et al.

– SC is a directed relation SC ⊆ C × C which is called subsumption. SC (c1, c2)
means that c1 is a subconcept of c2. Consequently, c1 is called the subsumee
and c2 is the subsumer.

– PC is a directed relation PC ⊆ C × C which is called partonomic inclusion.
– ρ is a function that relates concepts in neither a taxonomical nor a parto-

nomical way: ρ : R → C × C.
– AO is a set of axioms on O expressed in a logical language, e.g. a description

logic.

The notion of lexicon is also introduced. A lexicon for an ontology structure O
is a 4-tuple L = {LC , LR, F , G}, where:

– LC and LR are two sets whose elements are lexical entries for concepts and
relations respectively.

– F and G are two relations F ⊆ LC × C and G ⊆ LR × R called references
for concepts and relations respectively such that: F (l) = {c ∈ C| (l, c) ∈ F}
and F−1 (c) =

{
l ∈ LC | (l, c) ∈ F}

. G and G−1 are defined analogously.

In [17] only the concept hierarchy (SC) was hallmarked from the generic function
ρ. We have also made evident the partonomic inclusion (PC) since it plays an
important role in our main source ontologies.

In turn, a knowledge base structure is a 4-tuple KB =
{O, I, ιC , ιR

}
, where:

– O is an ontology.
– I is a set whose elements are called instances.
– ιC : C → 2I and ιR : R → 2I×I are two functions for concept instantiation

and relation instantiation respectively.

Again, the notion of lexicon is also introduced. Therefore, a lexicon for a knowl-
edge base structure KB just is a tuple LKB = {LI , J }, where:

– LI is a set whose elements are called lexical entries for instances.
– J ⊆ LI × I is a reference relation for instances, such that for any J , let for

l ∈ LI : J (l) = {i ∈ I| (l, i) ∈ J } and J −1 (i) =
{
l ∈ LI | (l, i) ∈ J }

.



Link Discovery in Graphs
Derived from Biological Databases

(Research Paper)

Petteri Sevon, Lauri Eronen, Petteri Hintsanen,
Kimmo Kulovesi, and Hannu Toivonen�

HIIT Basic Research Unit, Department of Computer Science,
P.O. Box 68, FI-00014 University of Helsinki, Finland

{Petteri.Sevon, Lauri.Eronen, Petteri.Hintsanen, Kimmo.Kulovesi,
Hannu.Toivonen}@cs.helsinki.fi

Abstract. Public biological databases contain vast amounts of rich data
that can also be used to create and evaluate new biological hypothesis.
We propose a method for link discovery in biological databases, i.e., for
prediction and evaluation of implicit or previously unknown connections
between biological entities and concepts. In our framework, information
extracted from available databases is represented as a graph, where ver-
tices correspond to entities and concepts, and edges represent known,
annotated relationships between vertices. A link, an (implicit and pos-
sibly unknown) relation between two entities is manifested as a path or
a subgraph connecting the corresponding vertices. We propose measures
for link goodness that are based on three factors: edge reliability, rel-
evance, and rarity. We handle these factors with a proper probabilistic
interpretation. We give practical methods for finding and evaluating links
in large graphs and report experimental results with Alzheimer genes and
protein interactions.

1 Introduction

The amount of publically available biological data is growing at a tremendous
pace, as new information about genomes, proteomes, interactomes etc. is pub-
lished daily. Despite the large amount of that information, it is clear that it only
represents a tiny fraction of the biological knowledge that potentially will be
discovered. For instance, consider the functions of genes: in the Gene Ontology
database1, 29.5% of those gene products that have an annotation for a molecular
function, the annotation at the time of writing is “unknown”. This example only
represents some of the facts we know that we do not know yet.

We present novel computational methods for predicting some of the missing
information, with the primary aim of producing and ranking new biological
hypothesis for life scientists working on their own specific problems. We assume
� Work done while visiting the University of Freiburg.
1 http://www.godatabase.org

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 35–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



36 P. Sevon et al.

a fairly simple and generic form for the input data: a graph where biological
entities and concepts constitute the set of vertices, and the edges correspond to
known and annotated relationships between the vertices. In this framework, a yet
undiscovered link between two entities or concepts may be manifested as a path
or a subgraph connecting the corresponding vertices. Qualitative hypotheses for
the biological mechanisms are generated by discovering such paths or subgraphs.
In this paper, we use the term link to refer to any connections between two
vertices in the graph, potentially output as a hypothesis for a biological relation.

Not all paths represent a biologically meaningful links. Two edges incident
on a vertex may constitute a spurious path, or edges may not be completely
reliable. To be able to address more interesting questions, such as evaluation
of the statistical significance of a link, or ranking a set of vertices in order of
strength of linkage to a given vertex, we need a way of quantifying the strength
of a link. This will be a central topic of this paper.

In our scenario for the analysis, a life scientist poses queries to a graph
database system. In a simple form, such a query can ask if a path exists be-
tween two given concepts, and how strong the link is. In a more complex setting,
the user may submit sets of vertices and ask the system to find, evaluate and
rank subgraphs connecting any pair of given vertices.

As a motivating example, consider gene mapping for a particular phenotype.
The mapping may have resulted in a large set of candidate genes. When further
expensive analyses are planned for the wet lab, the investigators first compare the
candidates in the light of what is known about them in the public databases and
literature, hoping to be able to concentrate the efforts and resources on the most
promising candidates. Due to the lack of automated methods, the work is mostly
done by manually browsing the databases. This is a slow and laborious process,
and necessarily limits the extent and coverage of the search. Our methods aim
at partial automation of such tasks. As for the specific example, methods for
automated discovery and analysis of connections between a candidate gene and
a phenotype have only recently started to emerge [1,2].

In this paper, we propose a method for measuring the strength of a link based
on the two-terminal network reliability [3] between the end vertices. The main
contributions of the paper are a novel application of the network reliability mea-
sure, as well as a unique way of assigning probabilities to the edges based on
three aspects: reliability, relevance, and rarity. Reliability reflects the confidence
to the data source, relevance is a subjective measure of importance, and rarity
rewards (informative) edges between nodes with low degrees. We give methods
for finding good paths and subgraphs and for evaluating their quality. The ap-
plicability of the methods is not restricted to gene–phenotype links; they can be
used for analyzing the link between any pair of concepts, and potentially even
in completely different application areas.

Related work. Our work can be characterised as link discovery (link mining,
see, e.g., [4] for a review)—or, more specifically, as link prediction; we aim at
predicting links between pairs of vertices, where none exist in the form of di-
rect edges. We work on the abstract level of graphs. This gives our methods the



Link Discovery in Graphs Derived from Biological Databases 37

flexibility to work, in principle, with arbitrary concepts and relations. In con-
trast, methods for specific prediction and annotation tasks have already been
heavily used in bioinformatics, for instance to predict genes from the DNA, to
predict protein structures and functions, to analyse metabolic pathways, and so
on. Our approach is complementary to these, and characteristically integrates
different sources of data on an abstract level. Swanson [5,6] successfully demon-
strated that novel, unexpected links can be found between entities that are not
directly connected. He was able to find an association between a set of articles on
Raynaud’s syndrome and another set on fish oil through associations via a third
set of articles. Many measures have been proposed for assessing the strength of
a link based on overlapping neighborhoods (see, e.g., [7] for a review), i.e., a sub-
graph consisting of parallel paths of length two. Lin and Chalupsky [8] consider
the rarity of path type, in terms of edge types, as a factor of path interesting-
ness. However, little has been published on analysis of connection subgraphs of
arbitrary topology. Faloutsos et al. [9] present the idea of using delivered current
in resistor networks as a measure for subgraph goodness in (social) networks
and give a method for finding a good connection subgraph between two vertices.
Asthana et al. [10] use two-terminal network reliability for predicting protein
complex memberships from a network of protein interactions. Ramakrishnan et
al. [11] assign weights to the edges based on various measures of informativeness,
and then extract connection subgraph maximizing a goodness function based on
the resistor network model of Faloutsos et al.

Paper organization. The paper is organized as follows. We first describe the
data in Section 2. In Section 3, we define measures for the strength of a link
for a single path and for a subgraph, and show how to estimate the statistical
significance of a link. In Section 4, we report experimental results using a set
of known Alzheimer genes and a set of known protein interactions. Finally, in
Section 5, we conclude with a discussion.

2 Description of Data

Our graph data model consists of various biological entities and annotated rela-
tions between them. Large, annotated biological data sets can be readily acquired
from several public databases and imported into our graph model in a straight-
forward manner. We now describe the databases we use, and then give a formal
definition of the data model.

2.1 Biological Databases

NCBI’s Entrez2 is an integrated, text-based search and retrieval system for
the major biological databases. We use publically available copies of Entrez
databases3 along with the Gene Ontology Consortium’s annotation database
2 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
3 ftp://ftp.ncbi.nih.gov/entrez/links



38 P. Sevon et al.

(GOA) in our own research. The Entrez databases contain several kinds of in-
terlinked entities (e.g. article abstracts, genes, gene clusters and proteins), as-
sembled by NCBI from various source databases such as UniProt and PubMed.
The GO annotation database contains information about the biological pro-
cesses, cellular components, and molecular functions of gene products, and it is
linked with Entrez databases. Although many of the Entrez’s source databases
are themselves available for download, handling Entrez’s link files (essentially
lists of edges between entities) is far easier than parsing numerous flat data files
in each source database’s native format. This is our main reason for using the
Entrez databases instead of the original databases.

We represent these entities and relationships as vertices and edges in our
graph model. As a result, we get a total of 1,968,951 vertices and 7,008,607 edges.
The vertex types in our graph database and some statistics are summarized in
Table 1. This particular collection of data sets is not meant to be complete, but
it certainly is sufficiently large and versatile for real link discovery.

Table 1. Vertex types

Vertex type Source database Number of vertices Mean degree

Article PubMed 330970 6.92
Biological process GOA 10744 6.76
Cellular component GOA 1807 16.21
Conserved domain Entrez Domains 15727 99.82
Gene Entrez Gene 395611 6.09
Gene cluster UniGene 362155 2.36
Homology group HomoloGene 35478 14.68
Molecular function GOA 7922 7.28
OMIM entry∗ OMIM 15253 34.35
Protein Entrez Protein 741856 5.36
Structural property Entrez Structure 26425 3.33

∗OMIM entries correspond to phenotype descriptions and gene loci.

2.2 Data Model

Our data model is a directed, labeled and weighted graph G = (V, E). The
elements of the vertex set V are biological entities such as genes, proteins and
biological processes, as well as more general objects like article abstracts. They
are labeled by a type from a set Tv, such as “gene” or “protein”. Edge labels
(edge types) from set Te describe the relations between vertices, for example
“codes” (e.g., gene codes protein) or “refers to” (e.g., article refers to gene).

For notational convenience, we define the edge set to consist of triplets (u, τ, v),
where u and v are vertices from V and τ ∈ Te is the type of the edge between
them. Each type τ has a natural inverse, such as “coded by” and “is referred by”,
which we denote by τ−1 ∈ Te; in a similar fashion, for each edge e = (u, τ, v) ∈ E
we define its inverse edge e−1 = (v, τ−1, u) ∈ E and assume one always exists.



Link Discovery in Graphs Derived from Biological Databases 39

Effectively, the graph could be seen as undirected but with directed labels. We
call a directed path p from s to t an s–t path. Finally, we denote the set of edges
incident to any vertex v ∈ V by E(v) and the set of neighbouring vertices of v
by Γ(v) = {u ∈ V | (v, τ, u) ∈ E for some τ ∈ Te}.

Edges sometimes have natural weights in the source databases. For example,
a homology between two proteins could have values denoting the degree of se-
quence similarity. However, we will use other factors, too, to define the weights
of edges. They will be discussed next.

3 Link Goodness and Significance

Our goal is to discover and evaluate links between vertices specified by the
user. In order to be able to rank paths, or assess the significance of a connection
between two vertices, we need a measure for path goodness. We start by defining
edge weights (or probabilities), based on which we define a measure for the
quality of a given path, and then outline methods for finding the best paths
between a pair of vertices. After that we will address the evaluation of the link
as a function of the whole graph, not just the single best path. Finally, we will
show how to estimate the statistical significance of links, whether based on the
best path, or the graph as a whole.

3.1 Edge Weights

We define edge probabilities (weights) as a function of three aspects:

1. Reliability: how confident are we in the edge? How reliable is the data source,
how reliable is the method used to produce or predict the edge, and how
strong or probable is the connection estimated to be in the data source?

2. Relevance: how relevant is the edge (type) with respect to the query? We
assume that the investigator can give query-specific weights for edge types
according to his or her subjective opinions of the importance of each edge
type for the query at hand.

3. Rarity: how rare and informative is the edge? As an extreme example, an
article that refers to all human genes—and such articles do exist—is not
likely to be relevant for a specific gene, whereas an article that only refers
to few genes is much more likely to be informative. In our definition, edge
rarity will be directly related to the degrees of incident vertices.

We assume that edge relevance is defined by the user, and that edge reliability
is defined by the data source and potentially also by the user. We define rarity
below, and then combine all aspects to one probability.

Reliability. We envision that the reliabilities of edges are defined using a set of
simple rules, such as: if the edge is derived from Swiss-Prot, then its reliability
is 0.9, whereas if the edge is derived from the computer-annotated TrEMBL



40 P. Sevon et al.

database, then its reliability is 0.5. The interpretation of edge reliability is the
degree of belief the investigator has for the edge being correctly annotated.

If there is a value associated with an edge that reflects similarity or confidence,
such as a homology score, the value can be transformed into a [0, 1]-similarity
value. With the interpretation that the similarity of vertices u and v is the
probability that any relationship between u and a third vertex t is also true for
v and t, the similarity can be multiplied into the reliability of the edge.

Relevance. The relevance of an edge type is the degree of the investigator’s
belief that edges of that type represents a relevant connection with respect to
the query. In a practical system, the investigator has a basic configuration—a set
of default relevance values for edge types—and only few adjustments are needed
for a typical query.

The relevance values may sometimes be easier to give in terms of vertex types
instead of edge types. Then, relevance q(τ) for a vertex type τ can be decomposed
into coefficients for edge types by multiplying all edge types with one end-vertex
of type τ by

√
q(τ), and edge types with both end-vertices of type τ by q(τ).

As path relevance will be defined as a product of edge relevances, this gives the
desired outcome: the relevance of any path visiting a node of type τ is multiplied
by q(τ).

Rarity. We want to give lower scores for paths that visit vertices with high
degrees: the higher the degree of vertex v, the less likely it is that any two
neighbors of v actually have an interesting connection through v. We define
rarity d(v) first for vertices: d(v) is the probability that any two edges incident
on v are related to each other and represent a meaningful path.

We propose the ad hoc formula d(v) = (|Γ(v)| + 1)−α ∈ [0, 1], with α > 0,
to determine the penalty for the degree |Γ(v)| of vertex v; smaller values mean
larger penalty. The parameter α determines how steeply the penalty increases
with the degree.

With α = 1, rarity d(v) = 1/(|Γ(v)|+1) has a natural probabilistic interpreta-
tion. Consider a random walker who, at any vertex, is equally likely to follow any
edge, or stop at the vertex. Then, given a path p through vertices v1, v2, . . . , vk,
rarity d(vi) is the probability that a random walker who has so far traversed
nodes v1, . . . , vi, will next stay on the path and visit node vi+1. Although lower
values of α do not give equally attractive interpretations as random walk proba-
bilities, they can be useful in practice to give relevant penalties for vertex degree
that reward parallel paths more than a standard random walker.

The maximum value of d(v) for an non-terminal vertex v of a path is 3−α.
Rarity values of the terminal edges are ignored; they would only add a constant
factor to all paths. In principle, the values of α could be set separately for each
vertex type, but in this paper we use a single value for all vertices.

As with relevance above, the rarity values are decomposed into edge-specific
coefficients by taking the square root of them. Ideally, in the context of analysis
of connection subgraphs, the relatedness of edges incident on a vertex should
be tested for each pair of edges separately and independently. With the rarity



Link Discovery in Graphs Derived from Biological Databases 41

values of vertices decomposed on the incident edges, this is clearly not the case.
The approximation is used in order to avoid the quadratic computational cost
for each vertex. It has no effect on evaluation of the goodness of a single path.

Total edge weight. Now that we have defined all the components of edge
weight, we define edge weight w(e) simply as a product of those factors:
w(e) = r(e)q(e)d(e), where r(e) ∈ [0, 1], q(e) ∈ [0, 1], and d(e) ∈ [0, 1] are
the reliability, relevance, and rarity of edge e, respectively. Under the assump-
tion that they are probabilities for mutually independent necessary conditions
for the edge, the weight w(e) is the probability that edge e exists.

3.2 Discovery of Best Paths

Let us consider random graph model G(G, w) specified by graph G and edge
weights w described above. A realization of the random graph is obtained by
independently removing each edge e from G at probability 1 − w(e).

We propose the following definition for the goodness g(p, w) of path p =
e1e2 . . . ek:

g(p, w) =
k∏

i=1

w(ei) (1)

With the interpretation that w(e) is the probability that edge e exists, the good-
ness g(p, w) is the probability that the whole path exists in a realization of
G(G, w).

The path discovery problem. We now formulate the path discovery task: given
two sets S and T of vertices (S and T may overlap), find

1. the k best paths from S to T ,
2. all paths whose goodness is at least m, or
3. all paths that consist of at most � edges.

These paths could be shown to the user as most likely hypotheses involving
vertices from the given sets or, as will be discussed below, used for further
analysis of the link. In any case, before giving final results to the user, it is useful
to estimate the statistical significance of the results; this will also be discussed
below.

Algorithms. Standard algorithms for finding shortest paths [12,13] can be ap-
plied; the probabilities can be transformed into distances required by the stan-
dard methods by taking the negative logarithm of the goodness:

− log g(p, w) =
k∑

i=1

− log w(ei). (2)

Any combination of the abovementioned constraints for paths can be easily used.



42 P. Sevon et al.

The number of vertices that can be reached from a single source typically
grows exponentially with path length, until it saturates. If the maximum num-
ber of edges (or minimum goodness) is set so that the saturation point is not
reached at halfway to the maximum number (or minimum goodness), then a
bi-directional search starting from both sets will be substantially faster than a
standard unidirectional search.

3.3 Evaluation of Graph Connections

The goodness of a single best s–t path is not necessarily a good measure of the
strength of the link between vertices s and t. A link consisting of several parallel
paths may be considered stronger than a single path, even if all the individual
paths are weaker. With a probabilistic interpretation, the quality of a single
path reflects the probability that that particular path exists, whereas a more
appropriate measure often would be the probability that at least one path exists
between s and t.

Graph connection goodness. Based on the probabilistic interpretation, we pro-
pose using the two-terminal network reliability [3] as a measure for link goodness
g(G, w, s, t) between vertices s and t in graph G. The measure is defined as the
probability of a path existing in a realization of the random graph:

g(G, w, s, t) = Pr(“there is an s–t path in a graph generated by G(G, w)”).
(3)

Algorithms. The two-terminal network problem has been shown to be NP-hard
by Valiant [14], but the probability can be estimated using a straightforward
Monte Carlo approach: generate a large number of realizations of the random
graph, and count the relative frequency of graphs where a path from s to t
exists. Monte Carlo estimates that are accurate to within ±ε at high proba-
bility can be obtained using O(ε−2) iterations. Since we are only interested in
cases where g(G, w, s, t) is not very close to zero, we need not worry about the
number of iterations required to control relative accuracy. (Reasonable abso-
lute accuracy can be achieved with 100,000–1,000,000 iterations; in practice, our
Python-implementation is able to perform 1,000,000 iterations on a graph with
1,000 edges in roughly 1.5 hours on a 3.0 GHz P4 PC.)

A lower bound for g(G, w, s, t) can be computed efficiently by first enumerat-
ing all m-good or k best paths from s to t, and then evaluating g(G′, w, s, t) in
the subgraph G′ induced by the set of paths. A graph G′ = (V ′, E′) is induced
by a set of paths, if V ′ and E′ are the sets of vertices and edges, respectively, oc-
curring in the paths. Since the induced graph is a subgraph of G, it clearly gives
a lower bound. Following the terminology of Faloutsos et al. [9], the induced
subgraph G′ is here called a connection subgraph.

An upper bound for g(G, w, s, t) can be obtained easily when the paths induc-
ing G′ are searched unidirectionally starting from, say, s: include all the pruned
partial paths in G′ and connect them with an edge of probability one to t. This



Link Discovery in Graphs Derived from Biological Databases 43

provides the tightest possible upper bound based on G′. With bi-directional
search, the upper bound can be obtained in a similar way. Estimation of the
upper bound is easily incorporated to the Monte Carlo algorithm, but the pro-
cedure is slowed down due to the large number of additional edges from the
pruned paths. Our work so far relies on the lower bounds only.

Further efficiency improvements are possible by repeatedly replacing parallel
edges by only one edge and by removing vertices (except s or t) with exactly two
neighbors as long as there are any. This is a linear-time operation in the size of
the graph. For the class of series-parallel graphs, these operations reduce graphs
to a single edge and two-terminal network reliability can be computed exactly
in linear time.

3.4 Estimation of Link Significance

We eventually want to measure how strongly two given vertices, s and t, are
related in graph G. The path probability g(p, w) (Eq. 1) and the two-terminal
network reliability g(G, w, s, t) (Eq. 3) allow ranking of links, but their values
may be difficult to put into perspective. Is a probability of, say, 0.4 for the
existence of any s–t path high or low? This obviously depends on the data and
the specific instances.

Using maxp∈P(s,t) g(p, w), where P(s, t) is the set of all s–t paths (i.e., good-
ness of the best s–t path), or g(G, w, s, t) as a test statistic, we can estimate
the statistical significance of the link. This tells us how likely it is to obtain,
by chance, probability of 0.4 or better. There are a variety of meaningful null
hypotheses to be considered:

1. Vertices s and t of types τs and τt, respectively, are not more strongly con-
nected than randomly chosen vertices s′ and t′ of types τs and τt.

2. Vertex s of type τ is not more strongly connected to vertex t than a randomly
chosen vertex s′ of type τ .

3. Vertices s and t are not more strongly connected in the given graph G than
random graph H and edge weights w′ generated by model H similar to the
(unknown) model which generated G and w.

The last null hypothesis clearly is the most complicated one, as it is not easy
to come up with model H that generates random graphs that are topologically
sufficiently similar to the observed graph. The choice from the first two null hy-
potheses depends on what we are testing. In a symmetrical case, e.g., testing for
significance of connection between two candidate genes, the first null hypothesis
is appropriate. If the roles of the vertices are asymmetric, as in testing for the
connection from a set of candidate genes to a single phenotype, the second null
should be used. In the experiments, we apply the first null hypothesis to ass-
esment of gene–gene link, and the second one to assesment of gene–phenotype
link.

Under the null hypotheses 1 and 2, p values can be estimated by sampling
vertices s′ (Null 1) or pairs (s′, t′) (Null 2), and computing the test statistic
(g(p, w) of the best s′–t′ path p or g(G, w, s′, t′)) for all (s′, t′) pairs in the



44 P. Sevon et al.

sample. The p value for the connection between s and t is then the proportion
of (s′, t′) pairs giving a test statistic at least as high as the one observed for
(s, t). Because vertices of the same type may have wildly varying degrees, we
only sample vertices s′ and t′ that have degrees similar to s and t, respectively.

If a number of hypotheses are to be tested (e.g., several candidate genes), then
the resulting p values should be adjusted accordingly to account for multiple
testing.

4 Experiments

We demonstrate the use of link goodness by an example in the detection
Alzheimer disease genes. We selected a handful of known disease genes, and
estimated the significance of the gene–phenotype link for each. We did this this
separately for two test different statistics: the probability of the best path be-
tween vertices s and t, and the two-terminal reliability computed from the con-
nection subgraph induced by k best paths. In a second experiment, we evaluated
the significance of links between genes whose protein products are known to in-
teract. The experiments were performed using the Entrez dataset described in
Section 2.1.

Test design is not trivial: for any classified examples, i.e., known disease genes,
there are trivial links in the graph (e.g., the OMIM entry for the disease refers
directly to the candidate gene). The ideal solution would be to use only edges
that are annotated prior to publication of the gene–disease association, but it
is difficult to obtain the state of all databases at an earlier date. Instead, we
simply removed all trivial paths from the set of k best paths—e.g., paths whose
goodness is greater than a given threshold, or paths consisting of at most a given
number of edges.

In order to simplify the experimental setting and to avoid introducing a sub-
jective bias, we assume that all edges have the same product rq of reliability and
relevance. Consequently, the goodness of a path or subgraph depends only on
the topology of the graph and parameters α and rq.

We chose ten known human susceptibility and candidate genes for Alzheimer
disease—APP, PSEN1, AD5, AD6, AD9, AD7, COL25A1, APOE, PSEN2, and
AD6—obtained by querying the Entrez Gene database with term “Alzheimer”.
As the vertex representing the phenotype, we used the entry in the OMIM
database giving phenotype description of Alzheimer disease. This entry con-
tains trivial links to all known Alzheimer genes, as well as a large number of
references to literature on the disease.

For each gene, we sampled 100 genes from the set of all human genes that
have similar degree to the tested gene. The goodness values for links between
vertices corresponding to these genes and the phenotype constitute our empirical
null distribution.

For each gene (candidate or random), we first enumerated the best 100 acyclic
paths of at most 6 edges from the gene to the phenotype. For two of the genes,
COL25A1 and AD9, no paths to Alzheimer disease were found. Next, in order



Link Discovery in Graphs Derived from Biological Databases 45

to eliminate the trivial links, we removed all paths shorter than three edges from
this set. Figure 1 shows an induced graph for AD6 (but for clarity only 20 best
paths). We used the goodness value of the best of the remaining paths, and the
two-terminal network reliability of the graph induced by the remaining paths
as test statistics. Two-terminal network reliability was estimated using Monte
Carlo algorithm with 100,000 iterations; standard deviation of the estimate is less
than 0.0064. Based on these two statistics, we then estimated two p values—one
for the best path and another for the connection subgraph—for each candidate
gene.

Fig. 1. The graph induced by 20 best paths from gene AD6 to Alzheimer disease.
The terminal vertices are rectangular. The edges are labelled with their probabilities
(α = 0.25, rq = 0.8). Gene AD6 (Entrez Gene entry 64851) is linked to the locus
description (OMIM entry 605526) by a direct edge and via three articles. The locus
description is in turn linked to another locus description, insulin-degrading enzyme
(OMIM entry 146680), via two articles, and, finally, to Alzheimer disease (OMIM entry
104300) via two proteins and two UniGene clusters.

We experimented with the test statistics using parameter val-
ues (α, rq) ∈ {0.125, 0.25, 0.5, 1.0} × {0.2, 0.4, 0.6, 0.8, 1.0}. For α = 0.25
and rq = 0.8, the p values and values of the test statistics for each gene are
shown in Table 2. The probabilities of best paths and connection subgraphs
expectedly vary markedly across genes, and are not alone sufficient indicators
of the strength of a link. The estimated p values are more useful here. In
this test, they are consistently small; in fact, in many cases none of the
100 randomized data sets produced equally high goodness values. Based on
the results, it is difficult to claim that the analysis of connection subgraphs



46 P. Sevon et al.

is more powerful than analysis of the best path, but we would expect that to be
the case in general.

The goodness values also vary with the values of the two parameters of our
test. However, comparable p values were obtained for all combinations of param-
eter values (except for α = 1); mean p values for all combinations are shown in
Table 3. This can be seen as an indication of the stability of the measures with
respect to the parameters, but it also shows that the links are very strong and
rather obvious (as seen in Figure 1), even though all short paths were removed.

Table 2. Results: Alzheimer disease (α = 0.25, rq = 0.8)

Best path Connection subgraph
Gene p value goodness p value goodness

AD7 < 0.01 0.024 0.01 0.153
APOE < 0.01 0.184 0.01 0.876
APP 0.02 0.123 0.01 0.719
AD8 < 0.01 0.119 < 0.01 0.262
PSEN1 0.04 0.103 0.01 0.963
PSEN2 < 0.01 0.153 < 0.01 0.993
AD6 < 0.01 0.033 < 0.01 0.336
AD5 0.01 0.040 0.01 0.238

Table 3. Mean p values for all combinations of parameter values (best path/connection
subgraph)

rq \ α 0.125 0.250 0.500 1.000

0.2 0.0100/0.0075 0.0175/0.0063 0.0200/0.1325 0.0438/0.3813
0.4 0.0088/0.0075 0.0150/0.0075 0.0163/0.0075 0.0300/0.3813
0.6 0.0088/0.0063 0.0088/0.0075 0.0263/0.0100 0.0063/0.1338
0.8 0.0088/0.0063 0.0088/0.0063 0.0075/0.0075 0.0138/0.0075
1.0 0.0088/0.0200 0.0088/0.0063 0.0088/0.0075 0.0238/0.0088

In a second, more challenging experiment, we evaluated the strength of link
between APP and five genes whose protein products interact with the APP
protein: HADH2, APBA1, CHRNA7, APOA1, and SHC1. The interactions
were obtained from the IntAct-database4. The experiments were carried out the
same way as with Alzheimer disease, except that we used the first, symmetric
null hypothesis (i.e., vertices at both ends were randomized). In the results,
two genes show significant linkage to APP (Table 4). The other three genes get
non-significant p values despite relatively high values of the test statistics (com-
pared to the Alzheimer experiment), suggesting that pairs of genes are generally

4 http://www.ebi.ac.uk/intact



Link Discovery in Graphs Derived from Biological Databases 47

strongly connected. A possible remedy is to give higher relevance coefficients for
interaction-related edge types. However, it is also possible that simple weighting
of edges is not sufficient to distinguish the potential interaction-related paths
between the pairs of genes in these cases.

Table 4. Results: interactions with APP (α = 0.25, rq = 0.8)

Best path Connection subgraph
Gene p value goodness p value goodness

HADH7 < 0.01 0.159 0.01 0.917
APBA1 < 0.01 0.137 < 0.01 0.998
CHRNA7 0.17 0.058 0.52 0.359
APOA1 0.56 0.041 0.51 0.530
SHC1 0.15 0.118 0.07 0.937

5 Discussion and Conclusions

In this paper, we have proposed measures and methods for assessing the strength
of a link between a pair of vertices in a graph consisting of biological concepts.
Such graphs can be easily constructed from many biological databases; due to
the simplicity of the data model, integration of data is usually simple and the
essential requirement is a referential integrity between the data sources.

We introduced the ideas of assigning probabilities to the edges derived from
three factors—reliability, relevance, and rarity. The proposed measures for link
strength are based on probabilities of paths that are derived from edge proba-
bilies in a straightforward manner: One is the highest probability of path among
all paths connecting the pair of vertices; the other is based on two-terminal net-
work reliability, and approximates (bounds) the probability that at least one
path exists between the vertices. We believe that the probabilistic interpreta-
tions for link strength are more natural and intuitive for investigators than, e.g.,
conductance in resistor networks or capacity and maximum network flow.

We demonstrated the link goodness measures for evaluating the strength of
gene–phenotype-link using a set of known Alzheimer genes. Both measures gave
the known genes low p values, indicating that they would have been success-
fully identified among the most likely candidates for Alzheimer disease among a
random set of genes, except for two genes for which no link was found.

In a second experiment we evaluated the strength of the link between APP
and five other genes whose protein products are known to interact with the APP
protein. The results suggest that—although two of the genes showed significant
linkage to APP—the simplistic experimental setup using a single relevance value
for all edge types is not optimal, which was to be expected. We leave the evalu-
ation of expert-specified relevance coefficients as a topic for future research.



48 P. Sevon et al.

Using the goodness of the best path as a test statistic should be less robust
than using the two-terminal network reliability. However, in the example case of
Alzheimer genes, both methods gave comparable p values. This may be due to
several reasons: the function used for rarity, i.e., for penalizing vertex degrees,
may be suboptimal, or the test method of removing short paths may still leave
some trivial paths that skew the results. Further work is needed to study these
issues in detail.

Two of the Alzheimer genes did not have any paths to the disease. This may
be due to the limited set of databases we currently use. Several important types
of data are missing: protein–protein interactions, tissue specificities, pathways,
and Medical Subject Heading annotations of articles, to name a few. Actually, we
believe that our probabilistic approach is particularly suitable for analysis of data
sets containing uncertain relationships, such as computer annotated interactions
or links derived by text mining, as the confidence in the prediction can be easily
plugged into the reliability measure.

The use abstract, labeled graphs as a data representation has a number of
trade-offs. On one side, it is a generic format, it is easy to convert data into it,
and there is a large body of known results and algorithms for graphs. The down-
side is that information may be lost in the transformation, the vertex or edge
types may be too different to be really used in the same graph, and—above all—
without built-in knowledge about particular biological concepts, mechanisms,
and phenomena, specific discoveries about them cannot be made. It seems ob-
vious to us that several different approaches on different levels of detail and
integration are needed, and that they complement rather than compete with
each other.

There are several topics for further research. The penalty for vertex degree
is now determined for all vertices in a uniform manner, but it might be better
to have different rules for different vertex types. The penalty could also be edge
type sensitive. For example, consider an article with edges to a large number
of genes, one biological process, and one phenotype; we do not want to penal-
ize a path from the biological process to the phenotype from the edges to the
genes.

The path queries are now fully specified by the source and target vertex, mini-
mum goodness, maximum length, and edge type relevances. To have more control
over the resulting paths, we need a query language that allows an investigator
to specify the path types of interest. Earlier suggestions for query languages for
paths include regular expressions [15] and context-free grammars [16]. Expres-
sive query languages open possibilities for specifying aspects such as the formulae
for degree penalties as background knowledge, or edge relevances, that could be
made context sensitive. Another important area for practical applications is vi-
sualization of the resulting graphs.



Link Discovery in Graphs Derived from Biological Databases 49

Acknowledgment

This research has been supported by Tekes, Jurilab Ltd., Biocomputing Plat-
forms Ltd., GeneOS Ltd., and Humboldt Foundation.

References

1. Turner, F.S., Clutterbuck, D.R., Semple, C.A.M.: POCUS: Mining genomic se-
quence annotation to predict disease genes. Genome Biology 4 (2003) R75

2. Perez-Iratxeta, C., Wjst, M., Bork, P., Andrade, M.A.: G2D: A tool for mining
genes associated with disease. BMC Genetics 6 (2005) 45

3. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University
Press (1987)

4. Getoor, L., Diehl, C.P.: Link mining: A survey. SIGKDD Explorations 7 (2005)
3–12

5. Swanson, D.R.: Fish oil, Raynaud’s syndrome and undiscovered public knowledge.
Perspectives in Biology and Medicine 30 (1986) 7–18

6. Swanson, D.R., Smalheiser, N.R.: An interactive system for finding complemen-
tary literatures: A stimulus to scientific discovery. Artificial Intelligence 91 (1997)
183–203

7. Liben-Nowell, D., Kleinberg, J.: The link prediction problem fof social networks. In:
Proceedings of the 12th International Conference on Information and Knowledge
Management (CIKM’03). (2003) 556–559

8. Lin, S., Chalupsky, H.: Unsupervised link discovery in multi-relational data via
rarity analysis. In: Proceedings of the Third IEEE International Conference on
Data Mining (ICDM ’03). (2003) 171–178

9. Faloutsos, C., McCurley, K.S., Tomkins, A.: Fast discovery of connection sub-
graphs. In: KDD ’04: Proceedings of the tenth ACM SIGKDD international con-
ference on Knowledge discovery and data mining. (2004) 118–127

10. Asthana, S., King, O.D., Gibbons, F.D., Roth, F.P.: Predicting protein complex
memebership using probabilistic network reliability. Genome Research 14 (2004)
1170–1175

11. Ramakrishnan, C., Milnor, W.H., Perry, M., Sheth, A.P.: Discovering informative
connection subgraphs in multi-relational graphs. SIGKDD Explorations 7 (2005)
56–63

12. Tarjan, R.E.: Data Structures and Network Algorithms. CBMS-NSF Regional
Conference Series in Applied Mathematics. SIAM (1983)

13. Eppstein, D.: Finding the k shortest paths. SIAM Journal on Computing 28 (1998)
652–673

14. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM
Journal on Computing 8 (1979) 410–421

15. Lacroix, Z., Raschid, L., Vidal, M.E.: Efficient techniques to explore and rank
paths in life science data sources. In: Proceedings of Data Integration in the Life
Sciences, First International Workshop (DILS 2004). (2004) 187–202

16. Mork, P., Shaker, R., Halevy, A., Tarczy-Hornoch, P.: PQL: A declarative query
language over dynamic biological schemata. In: Proceedings of the American Med-
ical Informatics Association Annual Symposium 2002. (2002) 533–537



U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 50 – 65, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Towards an Automated Analysis of Biomedical Abstracts 

Barbara Gawronska, Björn Erlendsson, and Björn Olsson 

School of Humanities and Informatics, University of Skövde 
Box 408 

541 28 Skövde, Sweden 
barbara.gawronska@his.se, 
bjorn.erlendsson@his.se, 

bjorn.olsson@his.se 

Abstract. An essential part of bioinformatic research concerns the iterative 
process of validating hypotheses by analyzing facts stored in databases and in 
published literature. This process can be enhanced by language technology 
methods, in particular by automatic text understanding. Since it is becoming in-
creasingly difficult to keep up with the vast number of scientific articles being 
published, there is a need for more easily accessible representations of the cur-
rent knowledge. The goal of the research described in this paper is to develop a 
system aimed to support the large-scale research on metabolic and regulatory 
pathways by extracting relations between biological objects from descriptions 
found in literature. We present and evaluate the procedures for semantico-
syntactic tagging, dividing the text into parts concerning previous research and 
current research, syntactic parsing, and transformation of syntactic trees into 
logical representations similar to the pathway graphs utilized in the Kyoto En-
cyclopaedia of Genes and Genomes. 

1   Background and Aim 

Text mining has many applications in the area of bioinformatics, where computerized 
tools are used to analyze data concerning molecular biological objects (genes, pro-
teins, gene regulation pathways, cells, etc) in order to derive new biological insights 
[1], [2]. The aim of the research described in this paper is to develop a system that 
applies automated text analysis to support the large-scale analysis of metabolic and 
regulatory pathways by deriving relevant relations from textual descriptions found in 
the literature. The need for such a system arises from the fact that molecular biologists 
today need efficient computer-based tools to navigate the huge amount of knowledge 
that has been generated over the years and documented in published papers. Since it is 
becoming increasingly difficult to keep up with the vast number of scientific articles 
being published, there is a need for more easily accessible representations of the cur-
rent knowledge. The KEGG pathway database [3] is one example of such an effort to 
systematically collect the current knowledge on molecular interaction networks in 
biological processes. Building knowledge bases manually, however, is extremely 
time-consuming, since each pathway map in KEGG is based on findings from a large 
number of experiments which have been reported in separate research articles.  



 Towards an Automated Analysis of Biomedical Abstracts 51 

Although databases such as KEGG provide easily accessible sources of knowledge 
for the user, they require enormous amounts of work to build, maintain and keep up-
to-date. Therefore, the long-term aim of the research presented here is to provide a 
semi-automated method of deriving pathway maps using a text corpus as input. As 
indicated in the overview in Figure 1, we view text analysis as one component in a 
system that derives pathways from biomedical texts selected from PubMed, using 
lexical databases and a grammar-based in-depth analysis.  

Automated text analysis offers support for the process of structuring knowledge, 
provided it is conducted using in-depth text comprehension methods. Many of the text 
mining efforts in bioinformatics, however, have been based on using only statistics 
regarding co-occurrence of terms [4-11]. As pointed out in [7], this frequent use of 
simple co-occurrence owes its popularity to the fact that it is easy to implement and 
allows efficient processing of huge amounts of texts. Such text retrieval and text min-
ing devices can inform the researcher that there seems to be some relation between 
e.g. a gene and a protein, but in most cases they do not specify what kind of relation  
it is.  

Another line of research is to use pattern- and template-based approaches [12-16]. 
For example, [17] used a protein name dictionary together with surface clues on word 
patterns and simple part-of-speech rules to predict protein interactions. In a similar 
effort, [18] developed a method (BioNLP) based on pattern-matching, which searches 
for sentences matching a set of rules describing selected functions carried out by pro-
teins. The work in [19] represents a hybrid approach (a stochastic word tagger is 
combined with rule-based semantic and syntactic analysis). In general, there has been 
a shift of focus in recent years towards methods which make use of rules and gram-
mars. Examples can be found both in bioinformatics [6], [20] and biomedical infor-
mation extraction [21], as well as in other domains [22]. As pointed out in [13], a 
restriction common to most relation extraction models is the lack of ability to extract 
more than one relation per sentence. Another shortcoming is that relations not ex-
pressed by verbs but by, e.g., nouns or participles, are normally omitted. 

Among the on-line available information extraction tools, MedScan [6], [20] in-
cludes an ambitious attempt to extract positive and negative regulation relations from 
texts. The developers of the system stress the importance of analyzing subordinated 
clauses and taking modality into account. We tested the recently released version of 
MedScan (available at http://www.ariadnegenomics.com/products/medscan.html) on 
a corpus of 40 biomedical abstracts and found that - although the precision has im-
proved compared to the earlier version - the system is still not reliable enough. As 
pointed out in [6] the coverage is low.  In our corpus of 40 abstracts, only 19 biologi-
cal relations were found. Out of these 19 relations, it was found upon manual inspec-
tion that at most 9 had been correctly extracted. Errors were due mainly to insufficient 
grammatical analysis. Especially subordinated clauses, ellipsis, appositional construc-
tions, and coordination caused problems. Also long noun sequences caused evident 
difficulties, and the distribution of the extractions was uneven. Biological relations 
were extracted from 8 abstracts, while in the remaining 32 no relations were found, 
although manual inspection revealed that most of these abstracts mentioned several 
relevant relations. Furthermore, it seems that the system identifies biological objects 
only if their names are present in the specialized lexicon/ontology it has access to.  



52 B. Gawronska, B. Erlendsson, and B. Olsson 

In our research, we want to investigate to which extent a system relying mostly on 
general linguistic knowledge, and to a minimal degree on specialized ontologies can 
be successful in extracting relations from biological texts. We recently proposed a 
grammar-based method for extraction of biological relations from scientific texts [23-
26]. The method uses an algorithm that searches through the syntactic trees produced 
by a linguistic parser, identifies relations mentioned in the sentence, and classifies 
them with respect to their semantic class and epistemic status (facts, counterfactuals, 
or hypotheses). The semantic categories used in the classification are based on the 
relation set used in KEGG, so that pathway maps following the same notational con-
vention as KEGG can be automatically generated, and even other relations involving 
biological objects (coocurrence, part-whole relations) may be extracted. Subse-
quently, we added several extensions and improvements of the method, such as an 
improved named entity recognition component and the addition of a method for dis-
tinguishing between text describing previous and current work, thereby making it 
possible to avoid extracting relations from text sections which merely report findings 
from previous work or common knowledge, rather than new findings [27]. 

Scored & ranked 
path alignments

Path extracton from 
model  database

Path extraction from text

Path alignment
Parameter 

settings
GO graph

Organism 
annotation 
database

Model 
pathway 
database

PubMed
Lexical 

databases, 
grammar

GO term 
probability 
calculation

 

Fig. 1. Overview of the pathway derivation process  

In our work, we consider text analysis as a method to extract candidate pathways, 
which must be further evaluated for biological plausibility. As shown in Figure 1, a 
set of candidate pathways is extracted from a corpus consisting of a set of selected 
biomedical articles from PubMed, which allows the user to find all articles containing 
particular words or combinations of words. The text analysis process uses lexical 
databases and a grammar to achieve sufficient comprehension of the text for high-
precision extraction of pathways corresponding to the textual description. However, 
even if the candidate pathways extracted by our approach are generally correct with 
respect to the text (as demonstrated in [24] and [27]), not all of them are necessarily 
biologically plausible. Therefore, each candidate is evaluated by alignment to and 
comparison with currently known pathways collected from KEGG and other model 
databases. As described in detail in [28] the plausibility score is derived by calculat-
ing the semantic similarity between the set of gene products that have been paired in 



 Towards an Automated Analysis of Biomedical Abstracts 53 

the alignment, using the Gene Ontology structured vocabulary of annotation terms. 
By this technique it is possible to identify similarities between gene products that 
have annotations that seem to differ at a surface-level comparison, but which actually 
perform highly similar molecular functions or participate in similar biological proc-
esses. Using the derived plausibility scores, the candidate pathways are ranked so that 
the biologist using the system can select the most biologically relevant pathways that 
have been derived by the text analysis module. For details on the evaluation of candi-
date pathways, the reader is referred to [28]. Figure 2 shows the detailed architecture 
of the text processing system aimed at path extraction. 

The syntactic analysis and the algorithm deriving KEGG-like pathways from syn-
tactic trees have been described in [23]. In this paper, we focus on the procedures that 
prepare the raw text for syntactic and semantic analysis, viz. identification of named 
entities, tagging, and identification of relevant text parts, but we also mention the 
latest results of further tests of the syntactic parser and our considerations concerning 
the design of the final output. 

Biomedical abstracts

Normalization

Identification of proper 
nouns, acronyms,

semantic and syntactic 
tagging

 Identification of relevant 
text parts

Syntactic parsing

Extraction of biological 
relations from parse trees

Specialized verb lexicons

WordNet

Domain-specific acronym 
and name patterns

Grammar formalism

IE-algorithm

Textual delimitators

 

Fig. 2. The information extraction system 

2   Named Entity Recognition and Tagging – Domain Adaptation 
     and Testing  

Since the precondition for in-depth syntactic and semantic text analysis is appropriate 
tagging, we started by domain-oriented training and development of the Named Entity 
Identification (NER) procedure and the semantico-syntactic tagger. The original 
NER-algorithm and the tagger had been developed for the purpose of processing news 
reports [29, 30]. The tagger utilized parts of WordNet (version 1.6 [31]), a list of 
frequent closed-class words and an internally developed lexicon of verbs denoting 



54 B. Gawronska, B. Erlendsson, and B. Olsson 

communication acts (say, report, deny, suggest, indicate etc). The reason for introduc-
ing restricted verb lexicons into the system was the well-known problem of ambiguity 
in WordNet, especially in its verb part. As a training corpus, we selected a set of bio-
medical abstracts from PubMed using the search phrases "protein synthesis" and 
"lymphoma". The corpus consisted of ca 18 000 words (40 abstracts).  

The first step of text processing was normalization (also called tokenization): the 
abstracts were converted to plain text format, illegal characters were removed, head-
ings and bibliographic data marked up. The body text was split into single sentences, 
and each sentence divided into words. Compound words, where the components were 
connected by a hyphen, were split into single words. 

The NER-procedure, described in detail in [27] identifies proper nouns on the basis 
of their graphical form, part-of-speech information (e.g. adverbs are not treated as 
proper noun candidates), internal cues (e.g. presence of indicators like von, de, bin 
between two strings that both start in capital letters), and external (contextual) cues. In 
news reports, most frequent external cues are words describing function or semantic 
category of the named entity (president, minister, the city of ...). Other useful cues are 
communication verbs: an unknown word with initial capital letter followed by a com-
munication verb refers in an overwhelming majority of cases to a human being or a 
group of people.  

It was obvious that parts of this quite elaborated NER-procedure would be of mar-
ginal, if any, interest in the domain of biomedicine. At the same time, the procedure 
lacked information about most frequent patterns for gene and protein names. Abbre-
viations like p53 would not be detected as "named entities" because of their graphical 
form (first letter in lower case). Consequently, the NER-procedure was enriched by 
the following patterns (applied as internal identification cues):  

• Pattern 1: n lower case chars (n>=1) + m integers (m >=2) + optionally: any 
character (p53, cdc25C, bcl2) 

• Pattern 2: n lower case chars (n>=1) + m upper case chars (m>=1) + k inte-
gers (k>=0) (mRNA)  

• Pattern 3: integer + lower case + n integers (n>=0) (1alpha) 
• Pattern 4: n integers (n>=1) + m upper case (m >=1) (7BL) 

The NER-component has also been provided with a procedure linking acronyms to 
full names of biological objects [27]. 

For the purpose of Part-of-Speech tagging and semantic tagging, the most frequent 
verbs denoting relations between biological objects were manually identified in the 
texts, added to the verb lexicon and classified with respect to the corresponding stan-
dard relation set used in the Kyoto Encyclopedia of Genes and Genomes (KEGG, 
[32]). In this database, most verbs are directly related to KEGG relations (methyla-
tion, activation, inhibition, indirect effect). Other relations, introduced after consulta-
tion with biologists, are “state change”, “co-occurrence”, “aspectual relation” and 
“causative relation”. The last two types are of importance for the parsing and extrac-
tion procedure, since they indicate that the relevant biological relation is with a high 
probability degree encoded by the syntactic direct object of the verb (e.g. …cause 
methylation). In order to be able to interpret this kind of constructions, we added a 
procedure relating nouns derived from "bioverbs" to the corresponding verbs, and, as 
a consequence, to the corresponding KEGG-relations.  



 Towards an Automated Analysis of Biomedical Abstracts 55 

The training corpus was subsequently re-tagged using the new lexical information. 
The additions and modifications described above resulted in fairly good performance 
of the NER-procedure and the tagger: 95% recall and 85% precision on the training 
corpus. The main shortcoming was the time factor. The extensive search in WordNet 
is very time-consuming, so it took about 36 minutes to normalize and tag the corpus 
(i.e. 2 minutes per 1000 input words). In an attempt to reduce the need of WordNet 
search, the unique tagged words and symbols obtained from the training corpus (about 
2500 units) were stored in a database, which will be referred to as the “Tag Memory 
Database”. Each tagged string consists of the following elements: 
 

• the functor "semcat" (semantic class and grammatical category) 
• the word form found in the text 
• the basic (uninflected) word form 
• part of speech information, where the following categories are used: 

o open class words: 
 propername (“named entity”, this category includes acro-

nyms)  
 wnn (noun found in WordNet)  
 bionoun (noun derived from “bioverbs”, i.e. verbs denot-

ing KEGG-relations, like: methylation, activation, inhibi-
tion etc.)  

 wnv (verb found in WordNet)  
 ccv (communication and cognition verb)  
 bioverb (verb denoting a KEGG-relation)  
 adv (adverb)  
 a (adjective) 

o closed class words 
 conj(unction)  
 det(erminer)  
 prep(osition)  
 rel(ative marker) 
 pron(oun, personal) 
 mod(al verb)  
 cop(ula verb)  
 poss(essive pronoun)  
 neg(ation)  
 number  
 punct(uation mark)  
 math( symbol) 

• for a subset of verbs and nouns: semantic category 
• for verbs and nouns denoting biological relations: corresponding KEGG re-

lation type 

A test corpus consisting of about 15 000 words was then selected from PubMed using 
the protein name p53 as keyword. This corpus previously unseen by the system) 
 



56 B. Gawronska, B. Erlendsson, and B. Olsson 

was tagged by a combination of a simple machine learning procedure (matching 
words against stored tags) and the procedure that had been applied to the training 
corpus. Figure 3 shows the overall architecture of the process and the knowledge 
sources utilized at the subsequent stages. 

Named Entity Recognition

Linking acronyms to full 
names of biological objects

Matching input words 
against previously stored 

tags

 Identification and 
classification of remaining 

words and symbols

Domain-specific acronym 
and name patterns

WordNet

Specialized verb lexicons

Tag Memory Database
Closed Class Word List

 

Fig. 3. The modified NER and tagging components and knowledge sources 

 
The tagging process (after NER and acronym linking) is structured as follows: 

1. Is the string X part of a string stored in the tagged words database? 
 YES  copy the tag and proceed to the next word in the text 
 NO  go to 2 
2. Is X a closed class word, or an integer, or a mathematical or punctuation symbol?  
 YES  provide X with the tag from the closed class database or from rules 

 handling numerical expressions 
 NO  go to 3 
3. Check if X ends in a suffix typical for verbs or if X is stored in the list of irregular 

verb forms in WordNet 
 YES  create the basic form of X (infinitive) by morphological rules or get 

 the infinitive from the irregular verb list and proceed to 4 with the 
 infinitive as variable value 

 NO  go to 4 
4. Is X present in some of the internal verb databases (cc_verbs, bioverbs)? 
 YES  insert the appropriate tag and proceed to the next word in the text 
 NO  go to 5 
5. Does X end in a suffix typical for nouns derived from verbs (-ion, -ence, -men, ..)? 
 YES  take the stem as the new variable value and go to 4 
 NO  go to 6 
6. Is X present in the verb part of WordNet? 
 YES  insert the verb tag (wnv) and proceed to next word 
 NO  go to 7 
7. Does X end in a suffix typical for nouns or is X stored in the list of irregular noun 

forms in WordNet? 



 Towards an Automated Analysis of Biomedical Abstracts 57 

 YES  create the basic form of X by morphological rules or get the basic 
 form from the irregular noun list and proceed to 8 with the basic 
 form as variable value 

 NO  go to 9 
8. Is X present in the noun part of WordNet? 
 YES  insert the noun tag (wnn) and proceed to the next word in the text 
 NO  go to 9 
9. Does X end with a suffix typical for adjectives (-ic, -al,-ar, etc.) or adverbs (-ly). 
 YES  insert the appropriate tag and proceed to next word 
 NO   insert an empty tag and proceed to the next word or, if there are no 

 more words, end. 

3   Results of the Tagging Experiments 

Tagging of the training corpus resulted in 2500 unique tagged strings (after exclusion 
of tags identified as numbers). The distribution of morphosyntactic categories among 
those unique entries is shown in figure 4. It can easily be seen that proper nouns (i.e. 
names of genes, proteins etc.) and common nouns are the dominating categories. As 
much as 66% of the unique words (types) found in our corpus were nouns or proper 
nouns. This fits the observation, made in [23], that biomedical texts are extremely 
“noun-heavy” (74% of the word occurrences in a 15 000 corpus of biological texts 
investigated by the authors of [23] belonged to noun phrases).  

 

Fig. 4. Unique tagged strings from the training corpus 

WordNet was the primary knowledge source responsible for noun identification 
(95% of the tagged common nouns were found in WordNet). All proper names found 
in the corpus were identified by the NER-procedure. Verbs, however, were to a con-
siderable degree (38% of all content verb occurrences) identified on the basis of the 
small internal verb lexicons: the one of cognition and communication verbs (79 lex-
emes) and the yet smaller lexicon of frequent “bioverbs” (55 lexemes). This shows 
that the repertoire of verbs in this domain is highly repetitive. The results obtained 
from the test set confirm this observation. 

64% of the words and symbols in the test corpus could be classified using the tags 
obtained from the training set. The recall values remained unchanged (exactly 



58 B. Gawronska, B. Erlendsson, and B. Olsson 

95.2%). Figure 5 shows the impact of information learned from the training corpus on 
different part-of-speech classes. As could be expected, almost all occurrences of 
closed class words obtained their POS tags from the tag memory database. The use of 
WordNet was considerably reduced. Only 18.6% of the common nouns in the test 
material required search in WordNet, compared to 95% of the common nouns in the 
training set. 87% of all “bioverb” occurrences, 46% of the cognition and communica-
tion verbs, and 67% of other content verb occurrences were covered by the Tag 
Memory Database (TMD). This means that searching WordNet’s verb part was 
needed only for 19% of all verb occurrences in the test corpus, compared to 62% in 
the training corpus. As expected, the category that was least covered by the TMD was 
the group of proper nouns. The time needed for preprocessing and tagging decreased 
by almost 40%. 

 

Fig. 5. Tags (occurrences) in the test set in relation to knowledge sources 

4   Retrieval of Relevant Text Parts 

Since in-depth syntactic parsing may be time consuming, the tagged texts should 
preferably be divided into parts that should be sent to the syntax module for further 
analysis, and less relevant parts that can possibly be omitted, as they do not contain 
any novel information. Scientific texts normally include a description of previous 
research and common knowledge in the field, in order to put the author’s own re-
search into context. For our purpose, it is not desirable to extract relations from sec-
tions which concern findings from previous research, since those relations should 
instead be extracted from the original papers. Otherwise, the same relation would be 



 Towards an Automated Analysis of Biomedical Abstracts 59 

repeatedly extracted, since it has been reported in many papers referring to the same 
previous study. 

In the training corpus used in this work, we found that in 82.5% of the abstracts the 
distinction between previous and current research was overtly marked by explicit 
phrases like this study (e.g. this study utilized/investigated, in this study we investi-
gate(d), this study was intended, we investigate/describe, our aim was, etc.) In  
addition, for 5 of the abstracts (7.5%) the distinction could be correctly made by con-
sidering the shift of grammatical tense from present to past. Results and common 
knowledge are usually described in the neutral present tense, whereas switching from 
present to past frequently indicates attention shift from previous research to the cur-
rent experiment. On the basis of the analysis of the training corpus, we designed a 
procedure for distinguishing between the background part and the description of cur-
rent work [27]. It makes use of lexical cues (as the words and phrases mentioned 
above), and morphosyntactic cues (tense shift). 

As already stated, the idea behind dividing the texts into a background and fore-
ground part was to avoid unnecessary parsing of sentences that should not be sent to 
the relation extraction procedure. However, immediate deletion of the text portion 
preceding the foreground ‘border’ is not to recommend, since the last background 
sentence may contain antecedents of anaphoric expressions in the first foreground 
sentence. Thus, the last sentence in the background part is stored and later parsed if 
the first foreground sentence is found to contain expressions which are clearly  
anaphoric. 

In cases where no background/foreground “border” can be detected, the whole ab-
stract is sent to the parser. The procedure for foreground identification has been im-
plemented recently and is currently being evaluated using the test corpus. 

5   Parsing Results and Search for Biological Relations 

The syntactic parser utilized for further analysis of the abstracts has been described in 
[23] and [26]. It is based on a hybrid grammar formalism that combines features of 
GPSG (Generalized Phrase Structure Grammar) and LFG (Lexical Functional Gram-
mar), and pays special attention to correct co-indexation of elided subjects, subjects of 
infinitive clauses and elements of relative clauses. In the current experiment, we 
evaluated the parser on a sample of sentences randomly chosen from the foreground 
parts of the abstracts in the test corpus. Out of 100 sentences (average length 20 
words per sentence), 79 were parsed within reasonable time (1-20 seconds). Sentences 
that required longer processing time were regarded as unparsed. A close examination 
of the parse trees revealed that 86% were parsed either fully correctly, or almost cor-
rectly. In the latter case, the tree displayed some minor errors, like a wrong attach-
ment of short adverbials (like rather, yet, etc.), or that coordination was confused with 
apposition. These kinds of errors do not have any serious impact on relation identifi-
cation. If, however, some noun phrases were wrongly delimited, and/or a wrong word 
marked as the predicate, the tree was judged as incorrect.  

The outputs from the parser were converted to slightly simplified XML representa-
tions, where all empty nodes (provided for optional adverbials, etc.) were removed. 
Figure 6 shows a sample result of the conversion. 



60 B. Gawronska, B. Erlendsson, and B. Olsson 

 

Fig. 6. A sample syntactic tree - the result of parsing the sentence: Allelic loss at TP53 seems to 
arise independently of LOH at the RB1 gene in carcinomas of the uterine corpus in humans 



 Towards an Automated Analysis of Biomedical Abstracts 61 

The XML trees were subsequently searched according to an algorithm [23] that has 
previously been evaluated manually. The main idea behind the search algorithm is to 
identify predicates and their complements belonging to the same syntactic levels in 
the tree, and to distinguish predicates that refer to biological relations/processes from 
those that refer to other activities or express modality. The latter are utilized for mark-
ing the extracted relation as true, denied, or hypothetical.  

Technically, parts of the search are performed using the Microsoft .Net implemen-
tation of the XPath standard version 1.0 recommended by the World Wide Web Con-
sortium (W3C) [33]. The XPath standard provides a possibility to test whether or not 
a node matches certain patterns and to quickly retrieve a desired fragment of a tree 
structure. For example, the query ./f/pred[w and tense] returns the main predicate (the 
verb placed directly under the main sentence node), while (./f/predcompl | ./f/obj | 
./f/prepobj)/f/pred[w and tense] finds the embedded predicate (i.e. the main predicate 
in the subordinated clause). Similar queries may be formulated for finding the com-
plements of a given predicate and for the investigation of their internal structure. The 
process of tree compression, i.e. reducing the quite elaborated syntactic trees to 
shorter semantic representations, cannot be performed automatically by XPath and is 
thus implemented in an additional piece of code (in C#). 

In Figure 7, we show the present format of the output from the information extrac-
tion procedure. The relation/processes identified in a sentence are presented as a rela-
tively simple graph, where the node “subj”(ect) refers to the biological entity actively 
involved in the process, nodes “obj”(ect) or” prepobj(ect)” refer to other entities par-
ticipating in the relations, and “circumstances” contain the information about place, 
conditions, etc., that may be of relevance. The main relation, including the circum-
stances, is presented to the user, and other circumstance nodes may be expanded by 
the user.  

 

Fig. 7. The current format of the output from the information extraction procedure 



62 B. Gawronska, B. Erlendsson, and B. Olsson 

The parser employed here is more successful in interpreting syntactic structures 
than the one utilized in the system MedScan [6,20], as shown in [27]. A new experi-
ment with MedScan and the corpus investigated here confirmed the results of the 
previous evaluation [27]. MedScan identified biological relations only in 9 of 100 
sentences (the sentence shown in Figures 6 and 7 was not present among these 9 sen-
tences). The system has apparent problems with multiple clauses and subordinated 
sentences, and with multiword predicates like play a role, have a part, etc. Often, the 
only relation identified in a sentence is not the central one. For example, in the sen-
tence In particular, we examined two p53-target genes, p21/WAF1 and p53R2, with a 
crucial role in p53-induced cell cycle arrest and p53-induced DNA repair respec-
tively the only relation found by MedScan was: “Regulation (positive): TP53  DNA 
nucleotide-excision repair”; which refers to the phrase p53-induced DNA repair, 
whereas the specific roles of the genes p21/WAF1 and p53R2 remain undetected.  

6   Conclusions and Implications for Further Work 

The results of our tagging experiments confirm the intuitive judgment of biomedical 
texts as lexically highly repetitive. A very simple memory-based learning procedure 
reduced the need of searching for word categories in general lexicons from 62% to 
19% for verbs and from 95% to less than 19% for common nouns, already after  
obtaining tags from a rather limited training corpus (18 000 words). This finding 
suggests that it will be possible to eliminate the need of searching such large lexical 
databases as WordNet after a relatively short training period.  

The most flexible and open word class in the domain consists of named entities, 
mainly names of biological objects and chemical substances. The NER procedure 
employed here is quite successful in identifying the most frequent patterns for these 
names. It does, however, over-generate slightly, which is a heritage from the original 
procedure, designed for the purpose of news reports processing. In the domain of 
news reports, the interpretation of a proper noun is more context-dependent than in 
scientific texts within a restricted domain. For example, Sweden in Sweden rejected 
the proposal should be interpreted as a metonymical reference to human beings, while 
Sweden in Stockholm is the largest city in Sweden should get the category “geo-
graphic region/country”. The original NER procedure paid a lot of attention to such 
external cues, which is not as desirable in the domain of biomedicine, where the in-
terpretation of names of objects and substances is less context-dependent. One con-
clusion to be drawn from the results is that the influence of external cues in the NER 
component should be restricted. Furthermore, in order to obtain a more detailed clas-
sification of biological objects, we plan to include a specialized database (Gene On-
tology) as an additional knowledge source.  

The relative amount of untagged words was not high (5%), but the results can be 
further improved by a more elaborated treatment of combinations of mathematical 
symbols, numbers and measuring units, since these categories constitute most of the 
untagged, or incorrectly tagged strings. 

Another necessary improvement is prefix treatment; compounds like upregulated, 
downregulated, etc., are currently not being recognized when the constituents are 



 Towards an Automated Analysis of Biomedical Abstracts 63 

spelled as exemplified here (which is quite frequently the case in our corpus). This 
modification is, however, relatively straightforward to implement.  

Although the tagging procedure still suffers from certain shortcomings, it suits the 
domain of biomedicine better than most freely available taggers for English. The most 
important difference between the tagger employed here and the widely used Stanford 
tagger [34-35] concerns the treatment of proper names and acronyms. In our system, 
full names and acronyms are linked together, and strings of letters and numbers are 
matched against patterns for names of biological objects. These features facilitate 
parsing and interpretation of relations mentioned in a sentence. The Stanford tagger 
(version 2006-01-20) annotates each character string separately. A sequence as nu-
clear localization signal (NLS) gets the following Stanford tags: nuclear/JJ localiza-
tion/NN signal/NN -LRB-/-LRB- NLS/NNP -RRB-/-RRB, while our system provides 
the information that all words in the sequence refer to the same entity: sem-
cat('NLS',[propername,acr(['nuclear localization signal'])]). 

Furthermore, each string ending in a number and not beginning in a capital letter is 
classified as a number by the Stanford tagger, which leads to incorrect classifications 
of such terms as cbf2. 

Our continued work will include further development of the Tag Memory Data-
base, testing and development of the procedure for discovering the fore-
ground/background distinction, and the extraction algorithm. The syntactic parser is 
almost fully developed [24], which is due to the fact that the syntactic patterns in 
biomedical texts are highly repetitive, similarly to the lexical repertoire. Further de-
velopment is however needed to improve the recall, where the problems are mostly 
related to ambiguity. The high frequency of recurrent lexical and syntactic patterns 
indicates that automatic extraction of pathways from biomedical texts is not an unre-
alistic task. 

Finally, the format used to represent the output from information extraction (see 
fig. 7) needs further development. At this point it is only a first version to demonstrate 
one possible representation. A detailed user-study is necessary in order to decide what 
information must be included in the output and how it should be represented. 

References 

1. Baxevanis, A.D. and Ouellette, B.F.F.: Bioinformatics: A Practical Guide to the Analysis 
of Genes and Proteins, 3rd Edition. Wiley-Interscience. (2004) 

2. Mount, D.W.: Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Press. 
(2001) 

3. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M.,: The KEGG resources 
for deciphering the genome. Nucleic Acids Res. 32, (2004) 277-D280 

4. Becker, K.G., Hosack, D.A., Dennis Jr, G., Lempicki, R.A., Bright, T.J., Cheadle, C. and 
Engel, J.: PubMatrix: a tool for multiplex literature mining. BMC Bioinformatics 4:61, 
(2003) 

5. Chaussabel, D. and Sher, A.: Mining microarray expression data by literature profiling. 
Genome Biol. 3(10) (2002) research0055.1–research0055.16. 

6. Darasiela, N., Yuryev, A., Egorov, S., Novichkova, S., Nikitin, A. and Mazo. I.: Extracting 
human protein interactions from MEDLINE using a full-sentence parser. Bioinformatics 
20(5) (2004) 604-611. 



64 B. Gawronska, B. Erlendsson, and B. Olsson 

7. Jelier, R., Jenster, G., Dorssers, L.C.J., van der Eijk, C.C., van Mulligen, E.M., Mons, B. 
and Kors, J.A.: Co-occurrence based meta-analysis of scientific texts: retrieving biological 
relationships between genes. Bioinformatics 21(9) (2005) 2049–2058. 

8. Jenssen, T.K., Öberg, L.M.K,, Andersson, M.L. and Komorowski, J.: Methods for Large-
Scale Mining of Networks of Human Genes  In: Proc.  of The First SIAM Conference on 
Datamining, Chicago, April 2001 (2001) 

9. Stapley, B., Benoit, G.: Biobibliometrics: Information retrieval and visualization from co-
occurrences of gene names in Medline abstracts. In Proceedings of PSB 2000, Hawaii, 
USA (2000) 529-540. 

10. Tanabe, L., Scherf, U., Smith, L.H., Lee, J.K., Hunter, L. and Weinstein, J.N.: MedMiner: 
an Internet text-mining tool for biomedical information, with application to gene expres-
sion profiling. Biotechniques 27(6) (1999) 1210-1217. 

11. Wren, J.D., Bekeredjian, R., Stewart, J.A., Shohet, R.V., and Garner H.R.: Knowledge 
discovery by automated identification and ranking of implicit relationships. Bioinformatics 
20 (2004) 389–398. 

12. Friedman, C., Kra, P., Yu, H., Krauthammer, M., Rzhetsky, A.: GENIES: A natural-
language processing system for the extraction of molecular pathways from journal articles. 
Bioinformatics 17 (2001) 

13. Hahn, U., Romacker, M., Schulz, S.: Creating knowledge repositories from biomedical re-
ports: The MEDSYNDIKATE text mining system. In Pacific Symposium on Biocomput-
ing 2002, Kauai, Hawaii, USA (2002) 338 - 349. 

14. Park, J.C. Kim, H.S., Kim, J.J.: Bidirectional incremental parsing for automatic pathway 
identification with combinatory categorical grammar. In Proceedings of PSB 2001, Ha-
waii, USA (2001) 396-407. 

15. Pustejovsky, J., Castano, J.: Robust relational parsing over biomedical literature: Extract-
ing inhibit relations, Proceedings of PSB 2002, Hawaii, USA (2002) 362-373. 

16. Hishiki, T., Collier, N., Nobata, C., Okazaki-Ohta, T.. Ogata, N., Sekimizu,T., Steiner,R., 
Park, H.S., and Tsuji, J. Developing NLP Tools for Genome Informatics: An Information 
Extraction Perspective. Proceedings of the 9th Workshop on Genome Informatics (1998) 
81-90. 

17. Ono, T., Hishigaki, H., Tanigami, A. and Takagi, T.: Automated extraction of information 
on protein-protein interactions from the biological literature. Bioinformatics 17 (2001) 
155-161. 

18. Ng, S.-K. and Wong, M.: Toward Routine Automatic Pathway Discovery from On-Line 
Scientific Text Abstracts. Genome Informatics 10 (1999) 104-112. 

19. Rindflesch, T., Tanabe, L., Weinstein, J., Hunter, L.: EDGAR: Extraction of drugs, genes, 
and relations from biomedical literature. In Proceedings of PSB 2000, Hawaii, USA 
(2000) 517-528. 

20. Novichkova, S., Egorov, S., and Daraselia, N.: MedScan, a natural language processing 
engine for MEDLINE abstracts. Bioinformatics 19:13 (2003) 1699-1706. 

21. Rosario, B. and Hearst, M.A. (2004) Classifying semantic relations in bioscience texts In 
Proceedings of ACL04, Barcelona, Spain. 

22. Roth, D. and Yih, W.: A linear programming formulation for global inference in natural 
language tasks. In Proc. CoNLL (2004) 

23. Gawronska, B. & Erlendsson, B.: Syntactic, Semantic and Referential Patterns in Bio-
medical Texts: towards in-depth text comprehension for the purpose of bioinformatics. In 
Sharp, B. (ed.): Natural Language Understanding and Cognitive Science. Proceedings of 
the 2nd International Workshop on Natural Language Understanding and Cognitive Sci-
ence NLUCS 2005, Miami, USA, May 2005 (2005) 68-77 



 Towards an Automated Analysis of Biomedical Abstracts 65 

24. Gawronska, B., Erlendsson, B. and Olsson, B.: Tracking Biological Relations in Text: A 
Referent Grammar Approach. Biomedical Ontologies and Text Processing, Workshop held 
in conjunction with the European Conference on Computational Biology, ECCB 2005, 
Madrid, Spain, Sept 28, 2005 (2005). 

25. Gawronska, B, Olsson, B, de Vin, L.: Natural Language Technology In Multi-Source In-
formation Fusion. In Proceedings of the International IPSI-2004k Conference, Kopaonik, 
Serbia, April 2004, Published on CD with ISBN 86-7466-117-3 (2004) 

26. Olsson, B., Gawronska, B. and Erlendsson, B.: Deriving Pathway Maps from Automated 
Text Analysis using a Grammar-based Approach. In: Proceedings of the 2nd Moscow 
Conference on Computational Molecular Biology (MCCMB), Moscow, Russia, July 18-
21, 2005 (2005) 

27. Olsson, B., Gawronska, B. and Erlendsson, B.: Deriving Pathway Maps from Automated 
Text Analysis using a Grammar-based Approach. Journal of Bioinformatics and Computa-
tional Biology (special issue) (to appear) 

28. Gamalielsson, J. and Olsson, B.: Gosap: Gene Ontology Based Semantic Alignment of 
Biological Pathways (to appear) 

29. Gawronska, B., Erlendsson, B. and Duczak, H.: Extracting semantic classes and morpho-
syntactic features for English-Polish Machine Translation. Proceedings of the 9th Interna-
tional Conference on Theoretical and Methodological Issues in Machine Translation 
(TMI-2002), Keihanna, Japan (2002) 63-73. 

30. Gawronska, B., Torstensson, N., Erlendsson, B.: Defining and Classifying Space Builders 
for Information Extraction. In Sharp, B. (ed.): Proceedings of NLUCS- (Natural Language 
Understanding and Cognitive Science), Porto, Portugal, April 2004 (2004) 15-27 

31. Miller, G.A.: WordNet: An on-line lexical database of English. In Communications of 
ACM 38(11) (1995) 39-41. 

32. Kyoto Encyclopaedia of Genes and Genomes. http://www.genome.jp/kegg/, http:// 
www.genome.ad.jp/kegg/document/help_pathway.html (2005) 

33. World Wide Web Consortium (W3C). http://www.w3.org/TR/xpath (2005) 
34. The Stanford Natural Language Processing Group. http://www-nlp.stanford.edu/software/ 

tagger.shtml (2006) 
35. Toutanova, K., Klein D., Manning, C., and Singer, Y. Feature-Rich Part-of-Speech Tag-

ging with a Cyclic Dependency Network. In Proceedings of HLT-NAACL 2003 (2003) 
252-259. 

 



Improving Text Mining with Controlled Natural
Language: A Case Study for Protein Interactions

Tobias Kuhn1,2, Löıc Royer1, Norbert E. Fuchs2, and Michael Schröder1

1Biotechnological Center, TU Dresden, Germany
{loic.royer, michael.schroeder}@biotec.tu-dresden.de,

http://www.biotec.tu-dresden.de/schroeder
2Department of Informatics, University of Zurich, Switzerland

{tkuhn, fuchs}@ifi.unizh.ch,
http://www.ifi.unizh.ch/attempto

Abstract. Linking the biomedical literature to other data resources is
notoriously difficult and requires text mining. Text mining aims to au-
tomatically extract facts from literature. Since authors write in natural
language, text mining is a great natural language processing challenge,
which is far from being solved. We propose an alternative: If authors
and editors summarize the main facts in a controlled natural language,
text mining will become easier and more powerful. To demonstrate this
approach, we use the language Attempto Controlled English (ACE). We
define a simple model to capture the main aspects of protein interactions.
To evaluate our approach, we collected a dataset of 459 paragraph head-
ings about protein interaction from literature. 56% of these headings can
be represented exactly in ACE and another 23% partially. These results
indicate that our approach is feasible.

1 Introduction

In this paper we introduce a new paradigm of how to make knowledge of scientific
papers accessible by computers. We focus on the fields of life sciences – particular
biology – but our approach could be used in other fields as well.

Our approach consists of letting authors express their scientific results in a
formal summary that could be an integral part of the papers they publish. We
argue that it is more reasonable to let the authors formalize their own results,
instead of trying to extract these results from the articles.

This section explains our motivation, introduces the language Attempto Con-
trolled English (ACE) and compares it with other knowledge representation
languages. Section 2 shows how ACE is used to build an ontology for protein
interactions. In Sect. 3 we use this ontology as foundation for the expression of
scientific results and we show how 89 selected articles could have been summa-
rized in ACE. Section 4 shows the benefits of our approach and Sect. 5, finally,
gives a short outlook.

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 66–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Improving Text Mining with Controlled Natural Language 67

1.1 Motivation

Biomedical scientists are challenged by an ever-increasing amount of scientific
papers. The indexing service PubMed1 shows the huge quantity of literature
that the scientists have to face. It contains at the moment 16 million articles
and grows every year by over 600’000 articles. All these biomedical articles are
written in natural language. That means that we cannot easily process them
with computers. But, facing the quantity of literature, it is clear that we need
computational support in order to manage the contained knowledge.

In the last years, text mining and information extraction – which build both
upon natural language processing (NLP) – gained an increasing interest in
biomedical sciences. They aim to extract some kind of formal knowledge from
natural language texts, which is generally considered a very demanding task.
Even the basic problem of named entity recognition, that aims to identify named
entities (e.g. protein names) in natural texts, is far from being solved. Other
major aspects of text mining are the extraction of relationships (e.g. protein in-
teractions), the automatic classification of texts, and the generation of new hy-
potheses on the basis of the available literature [3]. The BioCreAtIvE contest [21]
nicely shows, that even sophisticated tools for text mining have a considerable
lack of precision and recall: For a simple “named entity recognition”-task the
precision ranged up to 86% and the recall was at most 84%. Another attempt
is described in [4]: Information about protein-interactions was extracted from a
data set of 1.2 million sentences that were taken from biomedical abstracts. They
achieved a precision of 91%, but with a poor recall of only 21%. We recommend
[3] and [12] for a more comprehensive overview of the “accomplishments and
challenges” of text mining.

As a first step towards a better management of biomedical literature, con-
trolled vocabularies like MeSH 2 and the Gene Ontology3 have been created.
They serve to classify biomedical publications and to link them to other re-
sources. GoPubMed4, for example, is a search engine that connects the abstracts
from PubMed with the formal structure of the Gene Ontology. Thus a researcher
can exploit the Gene Ontology for the search of relevant literature. Such tools
are very valuable for scientists and there has been a notable progress in the last
years, but it will never be possible to extract all the information correctly. There
is inherent ambiguity and vagueness in natural language that prevents its perfect
processing by computers.

For this reason we present an alternative approach: The authors of scientific
articles formally summarize their own results. Such formal summaries are added
to the articles which makes them processable by computers. This requires a
formal language that on the one hand is easy to learn and understand, and
on the other hand is expressive enough to represent even complicated scientific
results. It is clear that this approach is not applicable for papers that have been
1 http://www.pubmed.gov
2 http://www.nlm.nih.gov/mesh/meshhome.html
3 http://www.geneontology.org
4 See [5] and http://www.gopubmed.org



68 T. Kuhn et al.

written without the formal summaries, and that means that we still need NLP
or manual extraction for such papers. Thus we propose rather a concept for the
future than a solution for today’s problems. To explore our approach we use
Attempto Controlled English as knowledge representation language.

1.2 Formalization of Scientific Results

Since we want to access scientific results by computers, we have to formalize
this knowledge at some point. Today researchers write their results in natural
language. To extract these results and to formalize them, manual or computer-
supported text mining is necessary. Thus the formalization is accomplished by
computer-programs or by humans, and in either case it is done without the help
of the corresponding researchers. The article is the only source of information.
Since such articles are highly domain-specific, they require a lot of background
knowledge. Therefore the formalization is a very demanding task, even for hu-
mans. Altogether this causes a lot of knowledge to be lost in the vast amount of
biomedical literature.

We claim that most of these problems can be solved, if we simply let the
authors of scientific articles formalize their own results. The researchers them-
selves are the most qualified to understand their results, and thus they can give
the most precise formal representation. This is not even a big extra-effort for a
scientist, since he already has a – more or less – formal model of the domain
in his mind, and must write an abstract anyway. He just needs to learn how to
express his knowledge in a formal way. This means that we need to provide an
intuitive, yet formal language in which a scientist can write his results.

1.3 Attempto Controlled English

Attempto Controlled English (ACE)5 is a controlled natural language that has
been developed by Norbert E. Fuchs and his group at the University of Zurich.
ACE is a subset of natural English with a restricted grammar. There are no
limitations on the vocabulary, apart from some function words with predefined
meanings (e.g. ‘every’, ‘of’). ACE looks like English, but it is in fact a formal
language, which means that texts can be translated unambiguously into first-
order logic. Some ACE sentences would be ambiguous in natural English, but
ACE provides interpretation rules that allow in each case only one reading. The
report [13] contains a comprehensive description of the syntax of ACE.

In order to be able to write ACE texts, one has to learn the restrictions on the
grammar. Thus, like every formal language, ACE has to be learned. However,
since it looks like natural English, everyone is able to understand ACE texts
with almost no training. This is a big advantage over other formal languages.

The Attempto parser APE6 translates ACE texts into Discourse Representa-
tion Structures [6]. Such structures are equivalent to expressions in first-order
logic, and thus every ACE sentence has a logical representation. Furthermore,
5 See [7], [8], and http://www.ifi.unizh.ch/attempto/
6 http://www.ifi.unizh.ch/attempto/tools/



Improving Text Mining with Controlled Natural Language 69

first-order logic ∀X(protein(X) → ∃Y (terminus(Y ) ∧ has(X, Y )))

DL Protein � ∃has.T erminus

OWL (RDF/XML)

<owl:Class rdf:ID="Protein">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#has"/>
<owl:someValuesFrom rdf:resource="#Terminus"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

UML Protein Terminus

1..*

ACE Every protein has a terminus.

Fig. 1. Comparison of first-order logic, DL, OWL, UML, and ACE

APE creates a paraphrase that shows the interpretation of an ACE text. If a
writer is not familiar with the ACE interpretation rules, then he can check the
paraphrase for the validation of his ACE text.

1.4 Comparison of Knowledge Representation Languages

In order to show the benefits of ACE, we compare it with four other knowl-
edge representation languages: first-order logic [9], Description Logics (DL) [15],
Web Ontology Language (OWL) with its RDF/XML-syntax [14], and Unified
Modeling Language (UML) [2].

We have to state that these four languages are not independent. DL and ACE
build upon first-order logic, and DL are the basis for OWL. While first-order logic
and DL focus on the theoretical concepts of knowledge, OWL, UML, and ACE
concentrate on the implementation and application of knowledge representation.
Nevertheless we dare to give a direct comparison between these five languages.

Figure 1 shows how the fact ‘everything that is a protein has a terminus’ is
expressed in the five different languages. The OWL representation (using the
RDF/XML syntax) is the most verbose and – from the human perspective –
the least readable one. The representations in first-order logic and DL are more
concise, but they are still not understandable for people who are not familiar
with formal notations. The graphical notation of UML looks nice, but for a
non-specialist it is hard to guess the meaning of all the shapes and arrows. The
ACE representation, in contrast, should be immediately understandable for any
English speaking person. It looks perfectly like natural English and thus the
reader might not even recognize that it is a formal language.

We can state that controlled natural languages like ACE minimize the gap
between machines and humans. A reader is able to understand such languages
with almost no training. Furthermore, writing sentences in a controlled natural



70 T. Kuhn et al.

language is possible with only little effort, especially if the writer is supported
by an authoring tool (see Sect. 3.3).

2 Ontology for Protein Interactions in ACE

In order to have a clear basis for the formal representation of scientific knowledge,
we defined an ontology for proteins and their interactions. This section shows
how ACE can be used as an ontology language, and introduces our ontology for
protein interactions.

2.1 Ontologies

The main goal of an ontology is to provide a shared understanding of a certain
domain. This shared understanding can serve as basis for the communication
between people, for the interoperability between systems, for the improvement
of reusability and reliability of software systems, and for the specification of
software [20]. Furthermore ontologies are an excellent basis for the formal rep-
resentation of knowledge [11].

Ontologies are not yet broadly established in science, but they are expected
to gain a very important role in the future, especially in life sciences. The Gene
Ontology is the most famous example, although it is actually more a controlled
vocabulary than a real ontology.

2.2 Ontology Elements

In order to provide basic structures for ontologies in ACE, we adopt the elements
of DL – individuals, concepts, and roles – and we call them ontology elements.
Furthermore we introduce an additional structure: context information.

Individuals. Individuals stand for single objects of the domain. They are rep-
resented in ACE as proper names like ‘Bub1’ (that stands for a protein) or
‘Alzheimer’ (that stands for a disease).

Concepts. Concepts stand for sets of objects, and there are two possibilities to
express them in ACE. Common nouns are the most straight-forward way.
The noun ‘protein’, for example, can stand for the concept of all proteins.
As a second possibility we can use adjectives (in their positive form). The
adjective ‘organic’, for example, can be used for the concept of all organic
substances.

Roles. Roles stand for binary relations between objects, and they can be ex-
pressed in four different ways. First of all, we can use transitive verbs for
expressing roles. For example, we can use ‘interacts-with’ to express a re-
lationship between proteins. Next, we can combine transitive verbs with
adverbs. For example, we can use the adverb ‘directly’ together with the
transitive verb ‘interacts-with’ to express the role ‘directly interacts-with’.
As a third possibility we can use of-constructs like ‘is a part of’. Due to the
syntax of ACE, ‘of’ is the only allowed preposition for nouns. Finally, we



Improving Text Mining with Controlled Natural Language 71

Fig. 2. Context information

can use constructs with comparative forms of adjectives like ‘is larger than’.
Such constructs typically represent transitive relationships.

Context Information. The examination of the results of scientific papers on
protein interactions showed that normal roles are often not sufficient to ex-
press the needed information. We can express simple statements like ‘P1
interacts-with P2’, but we cannot express statements with contextual in-
formation like ‘P1 interacts-with P2 in Yeast’ or ‘P1 interacts-with P2 in
Microfilament for Motor-Activity’. In order to be able to express such re-
sults, we want to allow roles to have such additional information. In natural
English we usually express such information with prepositional phrases, and
this is exactly the way we will do it in ACE. Figure 2 illustrates the examples
without and with context information.

Using these ontology elements, we can state for example

P1 is a protein and directly interacts-with P2 in Yeast.

where ‘P1’, ‘P2’, and ‘Yeast’ are individuals, ‘protein’ stands for a concept, and
‘directly interacts-with’ stands for a role. The phrase ‘is a’ is used to assign the
individual ‘P1’ to the concept ‘protein’. The conjunction ‘and’ connects the state-
ments flanking left and right. The preposition ‘in’, finally, connects to the context
‘Yeast’.

2.3 Ontology for Protein Interactions

Since we found no existing ontology that fits our needs, we had to create our
own ontology for protein interactions. First, we defined concepts that allow us
to make statements about the structure of proteins and protein-complexes. For
the sake of a clear structure, we introduced the concept protein-unit, which is



72 T. Kuhn et al.

continuant

Fig. 3. The structure of the ontology for protein interactions

either a protein or a protein-complex, and protein-component, which is either a
protein-unit or a region of a protein. In order to describe the structure of such
regions, we defined concepts like ‘residue’, ‘secondary-structure’, and ‘domain’.

Next, we defined the roles for the description of interactions between proteins
like ‘interacts-with’ or ‘binds’. We can also express more complicated interactions
like ‘increases the phosphorylation of’.

Furthermore, we defined some concepts for expressing additional information
about proteins, like the localization to a certain cellular component or the par-
ticipation in a certain process. The big picture of this ontology is shown in Fig. 3.



Improving Text Mining with Controlled Natural Language 73

3 ACE Summaries

Our goal is to show how scientists could write formal summaries of their results.
There are some questions that naturally arise: What are these results about?
How complex is it to formulate them in a formal language? In the following we
present an empirical study of the feasibility of our approach.

3.1 ACE Summaries for 89 Selected Articles

Since we want to show how results of papers about protein interactions could have
been written in ACE in the first place, we picked 89 Elsevier -articles that concern
protein interactions. Such articles mostly have a section called “Results” which is
subdivided into subsections. The headings of these subsections are short descrip-
tions of the corresponding results. It turned out that these headings are highly
suitable for a manual translation into ACE. Please note that the intended method-
ology is not to express the results first in natural language and then to translate
them into ACE. We do this just to demonstrate the feasibility of our approach.

The 89 articles contain 457 such headings. 184 of them are ignored, because
they are not formulated as facts (e.g. “Functional characterization of Pellino2”7)
or because they contain information that is not about protein interactions.

total: 457 (100%)
ignored: (not a fact) 87 (19%)

(off-topic) 97 (21%)
used: 273 (60%)

We then tried to translate the 273 remaining headings into ACE. For 154
of them there is a perfect match, which means that the complete information
can be expressed in ACE; e.g. the heading “Interaction of Act1 with TRAF6”8

can be rephrased perfectly as “Act1 interacts-with TRAF6”. For another 62
headings only a part of the information is expressed; e.g. the heading “The
mtFabD protein is part of the core of the FAS-II complex”9 can only partially
be rephrased as “MtFabD is a subunit of FAS-II”. For the remaining 57 headings
there is no translation at all.

used: 273 (100%)
matched: (perfect) 154 (56%)

(partial) 62 (23%)
unmatched: 57 (21%)

Let us take a closer look at the reason, why 119 headings cannot be rephrased
in ACE at all, or only partially. 56 of them could not be rephrased because
their content is not covered by our model, but they could be expressed with
an extended model. Another 21 headings describe relations of relations, like the
heading “Kal-GEF1 activation of Pak does not require GEF activity”10. In this
7 See article PMID 12860405.
8 See article PMID 12459498.
9 See article PMID 16213523.

10 See article PMID 15950621.



74 T. Kuhn et al.

case, there is a relation between two objects (“Pak activates Kal-GEF1”) and this
relation itself stands in another relation (“... does-not-require GEF-activity”). At
the moment, we cannot express such structures in ACE in a satisfying way. But
there are attempts to extend the language ACE, and we hope that we will be able
to express such statements in the future. Furthermore there are 11 headings with
fuzzy statements (e.g. “ANKRD contains potential CASQ2 binding sequences
...”11) and 31 headings that we could not understand without reading the whole
article.

not perfectly matched: 119 (100%)
not covered by our model: 56 (47%)
relations of relations: 21 (18%)
fuzzy: 11 (9%)
not understood: 31 (26%)

Thus, altogether we could rephrase 79% of the relevant headings, either par-
tially or perfectly. This makes us confident that our approach is feasible for prac-
tical use. The reason, why 119 headings are not rephrased perfectly, is mostly
our simple model and our lack of understanding. If we used a more detailed
model, and if we let the scientists themselves express their own results in ACE,
then we expect to be able to express much more than 79% of the results.

3.2 ACE Summary as an Integral Part of an Article

Since ACE looks like natural English, every reader of a scientific article is able
to understand ACE texts. Thus the ACE summary of the results could be an
integral part of the article. Figure 4 shows how an article with an ACE summary
could look like12. Figure 5 shows the corresponding logical representation as
a Discourse Representation Structure (consult [6] for details). As we see, the
natural looking ACE summary can be translated automatically into a formal
representation which is processable by computers.

Together with the abstract and a keyword list, the ACE summary gives a
concise insight into the content. In contrast to the abstract, the ACE summary
is readable by both, humans and machines; and in contrast to the keyword list,
the ACE summary does not only mention the objects of interest, but describes
the relations among them. Thus, every published article could be a contribution
to a constantly growing knowledge base.

3.3 Authoring Tool

Now we sketch a tool that would help writing ACE texts. It would guide the user
step by step and would need almost no training. Similar systems are the look-
ahead editor ECOLE [17,18], the natural language interface LingoLogic [19], and
the Ginseng-system [1]. Our tool would solve several problems:

11 See article PMID 15698842.
12 Article PMID 12419313 is used for this example.



Improving Text Mining with Controlled Natural Language 75

The β2-adaptin clathrin adaptor interacts

with the mitotic checkpoint kinase BubR1

Corinne Cayrol, Céline Cougoule, Michel Wright

Abstract

The adaptor AP2 is a heterotetrameric complex that associates
with clathrin and regulatory proteins to mediate rapid endocytosis
from the plasma membrane. Here, we report the identification of ...

Keywords: Protein interactions; Two-hybrid; Vesicular traffic; Adaptor

protein; Protein kinase; Mitotic checkpoint.

ACE Summary: Beta2-Adaptin binds BubR1 in Yeast-Two-Hybrid. A

trunk-domain of Beta2-Adaptin interacts-with BubR1. Bub1 interacts-with the

trunk-domain of Beta2-Adaptin. Bub1 interacts-with every beta-sheet of AP

and BubR1 interacts-with every beta-sheet of AP.

Fig. 4. Article with ACE summary

A B C D E F G H I

object(A,atomic,named entity,object,cardinality,count unit,eq,1), named(A,‘Beta2-Adaptin’)
object(B,atomic,named entity,object,cardinality,count unit,eq,1), named(B,‘BubR1’)
object(C,atomic,named entity,object,cardinality,count unit,eq,1), named(C,‘Yeast-Two-Hybrid’)
object(D,atomic,named entity,object,cardinality,count unit,eq,1), named(D,‘Bub1’)
object(E,atomic,named entity,object,cardinality,count unit,eq,1), named(E,‘AP’)
predicate(F,unspecified,bind,A,B), modifier(F,unspecified,in,C)
object(G,atomic,‘trunk-domain’,object,cardinality,count unit,eq,1)
relation(G,‘trunk-domain’,of,A)
predicate(H,unspecified,interact with,G,B)
predicate(I,unspecified,interact with,D,G)

J

object(J,atomic,‘beta-sheet’,object,
cardinality,count unit,eq,1)

relation(J,‘beta-sheet’,of,E)

⇒
K

predicate(K,unspecified,interact with,D,J)

L

object(L,atomic,‘beta-sheet’,object,
cardinality,count unit,eq,1)

relation(L,‘beta-sheet’,of,E)

⇒
M

predicate(M,unspecified,interact with,B,L)

Fig. 5. DRS-representation of the ACE summary



76 T. Kuhn et al.

– The tool would help the user to comply with the standard nomenclature. The
user would only be allowed to use the defined words. It would also prevent
typing errors.

– It would make sure that the created sentences comply with the ACE syntax.
At every stage, the tool would allow to proceed only in a way that leads to
a correct ACE sentence. Thus the user would not need to know about the
syntax of ACE.

– The tool would be aware of the structure of the ontology. In this way it would
make sure, for example, that the domains and ranges of roles are respected.

We give now an example how this tool could be used. Suppose that an author of
the article that is shown in Fig. 4 wants to write down the fact that the protein
Bub1 interacts with the protein β2-Adaptin via its trunk domain.

The sentences are created step by step by a simple menu. At the beginning
there is just an empty sentence that might look like this:

The quotes indicate the beginning and the end of the sentence and the box in
the middle is used to create the content. If the user clicks on it, then a menu
is displayed that shows the different options for beginning a sentence. Since we
want to talk about the protein Bub1 we first insert ‘Bub1’ as a proper name.
This looks as follows.

Proper names are hierarchically structured and the menu allows to navigate
through this hierarchy. Alternatively, we can use the search option to find a
certain term, or we can create a new proper name on-the-fly. In the next step
we get

where the proper name ‘Bub1’ is now fixed as the beginning of the sentence, and
we have a new menu with different entries. We want to express the interaction
with another protein, and thus we choose the verb ‘interacts-with’. Like proper
names, verbs are hierarchically structured and we can navigate through this
hierarchy. In the next step we get



Improving Text Mining with Controlled Natural Language 77

where we can define the second participant of the protein-interaction. Since we
want to state that the interaction goes via a trunk domain of the protein β2-
Adaptin, we first have to add the article ‘a’. Then we get

where we can choose the ‘trunk-domain of’-relation. Like proper names, such
of-relations are structured in hierarchies through which we can navigate (the
same holds for nouns and adjectives). After that we get

where we can specify the second protein ‘Beta2-Adaptin’. Finally we get

where we could use prepositions to add context information, e.g. to specify the
organism in which the interaction takes place. In our example, we now finish the
sentence with a full stop.

For the creation of this sentence we did not need any further knowledge about
ACE. Every person that is familiar with English and knows how to handle a
simple menu, is able to create ACE texts. However, to make such a tool really
user-friendly we will need a lot of usability testing, as it is done – with promising
results – for the Ginseng-system [1].

4 The Benefits of Our Approach

The preceding sections showed what needs to be done to express scientific results
about protein interactions in ACE. Now it is time to take a look at the benefits.



78 T. Kuhn et al.

Today there are many databases that contain life science data, but they are
mostly unsynchronized, incomplete, and often not up-to-date. With our approach
it would be much easier to provide complete and consistent databases.

Imagine that all the scientific papers about protein interactions summarize
their results in ACE. We could use these formal summaries to build up a dynam-
ically growing knowledge base about protein interactions. Of course, we would
also have to collect all the knowledge that is contained in old papers. For these,
we still need some form of classical text mining. But once we have such a knowl-
edge base that is continuously updated with the results of new papers, then we
would be able to answer many questions. We present now some examples.

Are some results consistent with an existing knowledge base or with
other papers? We can check, whether an ACE summary is consistent with
an existing knowledge base. If this knowledge base contains common knowledge,
then the results should be consistent, or otherwise it can be seen as an appeal
against the common knowledge.

Without formal declarations, it is impossible to check a paper for consistency.
Probably there exist scientific papers that contain results which are inconsistent
with the common knowledge. But since this can be very difficult to find out,
neither the author nor the readers might realize the special status of the results.

In the same way we can check, whether there exist papers that contradict a
certain paper. That would mean that different researchers claim contradictory
results. Being aware of such a contradiction might lead to a dialogue between
the corresponding scientists, which might entail better and consistent results.

Are some results (or parts of it) already known? With our formal ap-
proach we can check whether a certain result, or a part of it, is already known.
Results that are already considered common knowledge are usually not worth
to be described as results of scientific papers (unless they contain more detailed
information or if additional evidence is given). Thus it is very valuable to be able
to run a check, whether a certain result is already contained in the knowledge
base or not.

Furthermore a researcher might want to check, whether there exists scientific
literature that has arrived at the same or similar results. Altogether our approach
would help the researchers to save a lot of time, since they would not need to
search “manually” for the relevant literature.

Is there a known answer for a certain question? If someone – researcher
or not – has a specific question about the domain (e.g. protein interactions),
then we would be able to give automatically an answer.

Indeed, there exist already systems like MEDIE13 that provide some sort
of answer extraction using natural language processing. But such systems have
serious shortcomings: There is always a trade-off between precision and recall,
and only very simple queries are allowed. Furthermore, we cannot find answers
that are spread over multiple articles.
13 http://www-tsujii.is.s.u-tokyo.ac.jp/medie/



Improving Text Mining with Controlled Natural Language 79

type Bub1

supertypes Kinase – Enzyme – Protein – Molecule

subtypes BubR1

interacts directly with Beta2-Adaptin, Cdc20, Mad3

interacts indirectly with Mad2, APC

associates with Cdc20, Mad3

phosphorylates Bub1, Bub3

localizes to Kinetochore, Chromosome

participates in Cell-Communication, Signal-Transduction

Fig. 6. Overview over the object ‘Bub1’

What is known about a certain object of interest? In some cases we do
not want to ask a specific question, but we rather want to get an overview of a
single object of interest (e.g. the protein Bub1 ). If we ask for information about
such an object then we might get something as shown in Fig. 6. Such an overview
could be used for a dynamic hypertext representation. This would allow us to
navigate through the whole knowledge base, e.g. with an ordinary web browser.
New papers that are submitted can be integrated automatically and thus such
a web interface would be always up-to-date.

How are some objects of interest related? Instead of focusing on one single
object, we might want to have an overview of the interrelations of a certain
group of objects. We could extract, for example, the interacts-with-relations
of all proteins and use this data for further examination, like the detection of
clusters or hot-spots. Such examinations are already common in the research on
proteins (e.g. [10], [16]), but only with restricted data. With our approach we
could consider every interaction that has been published.

5 Outlook

We suggest an approach of using controlled natural language for making the
results of scientific papers readable and – to some degree – understandable by
computers. But in order to achieve this goal, there is still a lot of work to do. For
example, we need an authoring tool as sketched in Sect. 3.3, that would support
the authors of scientific papers in the creation of ACE summaries. A prototype
of such a tool does already exist. Furthermore, we need tools for the definition
of ontologies and for the collection and management of knowledge.

Besides all these technical requirements, there are also political ones. There
must be a commitment among the scientists of the corresponding field of research
– or at least among a large part of them – that scientific articles get summarized
in ACE. If such a summary is optional then there is little hope that it gets
established.

This is the point where the publishers and editors have to come into play. The
publishers would have to make ACE summaries a mandatory part of the articles,



80 T. Kuhn et al.

and the editors would have to check whether these summaries are correct and
complete. The creation of a formal summary should be an additional requirement
to consider when writing a scientific article, besides all the requirements that
already exist today (e.g. about the abstract, the keyword list, and the reference
list). The formal summaries can also be seen as a robust indicator for the value of
a scientific paper. Information that is already known and redundant information
could be ignored automatically, and wrong statements are likely to be detected
at some later point in time. Thus we could use the formal summaries to quantify
and qualify the contribution of a certain author, institute, or journal.

Due to the immense benefits such a system would bring along, we believe
in the great potential of our approach. It could be a first step towards better
communication and persistence of biomedical knowledge.

References

1. Abraham Bernstein, Esther Kaufmann, Christian Kaiser. Querying the Semantic
Web with Ginseng: A Guided Input Natural Language Search Engine. Department
of Informatics, University of Zurich, 2005

2. Grady Booch, James Rumbaugh, Ivar Jacobson. The Unified Modeling Language
User Guide, First Edition. Addison Wesley, 1998

3. Aaron M. Cohen, William R. Hersh. A survey of current work in biomedical text
mining. In Briefings in Bioinformatics, 6(1):57-71, 2004

4. Nikolai Daraselia, Anton Yuryev, Sergei Egorov, Svetalana Novichkova, Alexander
Nikitin, Ilya Mazo. Extracting human protein interactions from MEDLINE using
a full-sentence parser. In Bioinformatics, 20(5):604-611, 2004

5. Andreas Doms, Michael Schroeder. GoPubMed: exploring PubMed with the Gene
Ontology. In Nucleic Acids Research, 33:W783-W786, 2005

6. Norbert E. Fuchs, Stefan Hoefler, Kaarel Kaljurand, Tobias Kuhn, Gerold Schnei-
der, Uta Schwertel. Discourse Representation Structures of ACE 4 Sentences, Tech-
nical Report ifi-2006.07. Department of Informatics, University of Zurich, 2006,
ftp://ftp.ifi.unizh.ch/pub/techreports/TR-2006/ifi-2006.07.pdf

7. Norbert E. Fuchs, Kaarel Kaljurand, Gerold Schneider. Attempto Controlled
English Meets the Challenges of Knowledge Representation, Reasoning, Inter-
operability and User Interfaces. The 19th International FLAIRS Conference
(FLAIRS’2006), 2006

8. Norbert E. Fuchs, Uta Schwertel, Rolf Schwitter. Attempto Controlled English –
Not Just Another Logic Specification Language. In Logic-Based Program Synthesis
and Transformation, Eighth International Workshop LOPSTR’98, Lecture Notes
in Computer Science 1559, Springer, 1999,
http://www.ifi.unizh.ch/attempto/publications/papers/LOPSTR98.pdf

9. Melvin Fitting. First-Order Logic and Automated Theorem Proving, Second Edi-
tion. Springer, New York, 1996

10. L. Giot, J. S. Bader, C. Brouwer, A. Chaudhuri, et al. A Protein Interaction Map
of Drosophila melanogaster. In Science, 302(5651):1727-1736, 2003

11. Thomas R. Gruber. Toward Principles for the Design of Ontologies Used for
Knowledge Sharing. In International Journal of Human-Computer Studies, 43
(5-6):907-928, 1995



Improving Text Mining with Controlled Natural Language 81

12. Lynette Hirschman, Jong C. Park, Junichi Tsujii, Limsoon Wong, Cathy H. Wu.
Accomplishments and challenges in literature data mining for biology. In Bioinfor-
matics Review, 18(12):1553-1561, 2002

13. Stefan Hoefler. The Syntax of Attempto Controlled English: An Abstract Grammar
for ACE 4.0, Technical Report ifi-2004.03. Department of Informatics, University
of Zurich, 2004,
ftp://ftp.ifi.unizh.ch/pub/techreports/TR-2004/ifi-2004.03.pdf

14. Deborah L. McGuinness, Frank van Harmelen. OWL Web Ontology Language
Overview. W3C Recommendation, 2004,
http://www.w3.org/TR/2004/REC-owl-features-20040210/

15. Daniele Nardi, Ronald J. Brachman. An Introduction to Description Logics. In
The Description Logic Handbook: Theory, Implementation, and Applications, Cam-
bridge University Press, 2003

16. Benno Schwikowski, Peter Uetz, Stanley Fields. A network of protein-protein in-
teractions in yeast. In Nature Biotechnology, 18:1257-1261, 2000

17. Rolf Schwitter, Anna Ljungberg, David Hood. ECOLE: A Look-ahead Editor for
a Controlled Language. In Proceedings of EAMT-CLAW03, Controlled Language
Translation, Dublin City University, 141-150, 2003

18. Rolf Schwitter, Marc Tilbrook. Let’s Talk in Description Logic via Controlled Nat-
ural Language. To be presented at: Logic and Engineering of Natural Language
Semantics 2006 (LENLS2006), Japan, 2006

19. Craig W. Thompson, Paul Pazandak, Harry R. Tennant. Talk to Your Semantic
Web. In IEEE Internet Computing, 9(6):75-79, 2005

20. Mike Uschold, Michael Gruninger. Ontologies: Principles, Methods and Applica-
tions. In Knowledge Engineering Review, 11(2), 1996

21. Alexander Yeh, Alexander Morgan, Marc Colosimo, Lynette Hirschman. BioCre-
AtIvE Task 1A: gene mention finding evaluation. In BMC Bioinformatics, 6, 2005



U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 82 – 93, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

SNP-Converter: An Ontology-Based Solution  
to Reconcile Heterogeneous SNP Descriptions  

for Pharmacogenomic Studies 

Adrien Coulet1,2, Malika Smaïl-Tabbone2, Pascale Benlian3,  
Amedeo Napoli2, and Marie-Dominique Devignes2 

1 KIKA Medical, 35 rue de Rambouillet 75012 Paris, France 
2 LORIA (UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP), Campus scientifique, BP 239, 

54506 Vandoeuvre-lès-Nancy, France 
{coulet, malika, napoli, devignes}@loria.fr 

3 Université Pierre et Marie Curie - Paris6, INSERM UMRS 538, Biochimie – Biologie 
Moléculaire, Paris, France 

pascale.benlian@sat.ap-hop-paris.fr 

Abstract. Pharmacogenomics explores the impact of individual genomic varia-
tions in health problems such as adverse drug reactions. Records of millions of 
genomic variations, mostly known as Single Nucleotide Polymorphisms (SNP), 
are available today in various overlapping and heterogeneous databases. Select-
ing and extracting from these databases or from private sources a proper set of 
polymorphisms are the first steps of a KDD (Knowledge Discovery in Data-
bases) process in pharmacogenomics. It is however a tedious task hampered by 
the heterogeneity of SNP nomenclatures and annotations. Standards for repre-
senting genomic variants have been proposed by the Human Genome Variation 
Society (HGVS). The SNP-Converter application is aimed at converting any 
SNP description into an HGVS-compliant pivot description and vice versa. 
Used in the frame of a knowledge system, the SNP-Converter application con-
tributes as a wrapper to semantic data integration and enrichment. 

1   Introduction 

One of the great challenges in the post-genomic area consists in exploring the in-
volvement of individual genomic variations in biological processes. Technical  
advances in high-throughput genotyping enable rapid sampling of thousands of geno-
types. Among the large amount of individual variations (more than 10 millions dis-
playing a frequency higher than 1% in studied populations) dispersed all along the 
genome, very few are known to have an obvious pathological effect. These are named 
mutations. More general terms, such as polymorphism or variant, are preferred to 
characterize the general concept of variation [1]. Around 90% of the genome varia-
tions are limited to one-nucleotide substitutions (for example a guanine replaces a 
thymine at a given position in the genome) designated as single nucleotide polymor-
phism or SNP.   

The challenge mentioned above, i.e. to explore the involvement of individual ge-
nomic variations in biological process, can be considered as a data mining problem. 



 SNP-Converter 83 

Knowledge discovery in databases (KDD) is a process aimed at extracting from large 
databases information units that can be interpreted as knowledge units [2]. This proc-
ess comprises three major steps: (i) the selection and preparation of data, (ii) the data 
mining operation, and finally (iii) the interpretation of the extracted units. Various 
integration problems may arise along the process. The first step often requires to inte-
grate data from public and private databases in order to guide the selection step or to 
enrich the selected set of data. The last step also necessitates to assess the extracted 
information units with respect to existing knowledge [3]. In both cases, integration 
tasks will consist in establishing equivalence, consistency or discrepancy between 
data or concepts, as well as classifying new data or concepts among existing ones. 
This type of integration should therefore rely on a semantic conceptual frame in 
which reasoning mechanisms are available. Indeed, ontologies contribute to build  
such an environment [4].  

An ontology is a formalization of a conceptualisation [5], that is to say the defini-
tion and the representation for a given domain of concepts and their relationships  
allowing human and machine agents to share knowledge about this domain, and to 
reason with respect to this knowledge. By providing a semantic conceptual frame to a 
data mining process, an ontology should play a valuable role to facilitate data integra-
tion as well as knowledge acquisition.  

Pharmacogenomics is a multi-dimensional domain where genome variations, phe-
notypic data and drug properties can be mined together in order to find out possible 
associations of variations with individual good or adverse drug responses [6]. More 
and more pharmaceutical firms are willing to include the exploration of particular 
genomic variants in their drug clinical trials in order to detect relationships between 
the following three summits of the pharmacogenomics triangle (Figure 1): (1) drug 
(properties and administration), (2) phenotype (biological and clinical data), and (3) 
genotype (genome variations).  

Integration of the genotype dimension in clinical trials is not straightforward par-
tially because of the large number of variants present all along the genome. Indeed 
many genes contain more SNPs than can be conceivably genotyped in current studies. 
Thus the choice of a relevant subset of SNPs to be included in studies should be 
somehow guided. A  knowledge base called PharmGKB participates in this effort by 
offering a repository for storing experimental data sets related to pharmacogenomic 
studies [7]. 

Drug
e.g. drug properties, drug administration

Genotype Phenotype
e.g. individual genetic variations e.g. clinical data, molecular analysis  

Fig. 1. Triangular schematization of the pharmacogenomics domain 



84 A. Coulet et al. 

The present research work focuses on the genotype summit of the pharmacoge-
nomics triangle since its complexity is often underestimated, and since major difficul-
ties arise when locally observed  genotype data have to be confronted to existing data 
in public databases. Particularly the nomenclatures used to describe the SNPs are het-
erogeneous within the public databases themselves (dbSNP, UCSC genome browser, 
HapMap, PharmGKB), and when compared to private data sources, so that variant 
identification and correspondence between two heterogeneous sources is not easy to 
achieve [8].  

In [9], we have introduced the SNP-Ontology represented in the OWL language as 
a contribution towards building a semantic frame for pharmacogenomic studies. Our 
purpose is to use this ontology to formally represent the knowledge on genomic vari-
ants (i.e., SNP-knowledge base) as the first step of a KDD process as in [10, 11]. We 
thus developed the SNP-Converter application which acts as a wrapper for entering 
variant individuals in the SNP-knowledge base, starting from data extracted from 
various SNP-related databases as in [12, 13].  

The section 2 introduces the various SNP representations and the existing attempts 
for integration. Section 3 presents the SNP-Converter application: rationale and func-
tionalities. Usage of this application in the frame of the SNP-knowledge base is de-
scribed in section 4. Section 5 discusses the issues of the solution presented here, and 
the perspectives of this work in terms of contribution to future pharmacogenomic 
studies are proposed. 

2   Heterogeneity and Integration of Genomic Variations Data 

2.1   Heterogeneous Representations of Genomic Variations 

By definition, a genomic variation is originally associated to a position in a genomic 
(chromosome) sequence. However, when it affects a transcribed region, it is propa-
gated to transcript sequence and, if the position is in a coding region, to protein  
sequence. Variation databases indifferently represent variations in DNA, RNA or pro-
tein. Thus, they represent as well the original variation and its repercussions. For il-
lustration, the substitution of a guanine by a thymine can be represented by G/T in the 
DNA sequence, GGC/GTC in the affected codon, g/u in the corresponding RNA, 
Gly/Val in the translated protein. In addition, the representation within the databases 
of the variant position differs depending on the reference sequence (and its version) 
used to locate it. Let us take an example : the G/T substitution is at position 
11,087,877 in the chromosome 19 sequence, which has the accession number 
NC_000019 in the RefSeq database, at position 2,489,679 in the NT_011295 contig 
sequence, and at position 565 in the NP_000518 protein sequence (on the second nu-
cleotide of the codon). The substitution can also be localized at position 26,747 in one 
of the associated gene sequences, or at position 108 in the eleventh exon of this gene. 
Various syntaxes can be used to represent these variants, which are also often referred 
by their accession numbers in given databases. For example, the variant described 
above would be cited in the PharmGKB database as the G/T variant at position 
chr19:11087877, and in the dbSNP database as the rs28942082 polymorphism. A 
generic syntax has been recommended by the Human Genome Variation Society 



 SNP-Converter 85 

(HGVS). According to this proposed standard, our variant should be described by the 
following expression: NC_000019.8:g.11087877G>T, where NC_000019.8 is the 
unique accession number (in the NCBI RefSeq database) of the sequence used to po-
sition the variant, the letter g means that the sequence is genomic, by opposition to p 
for instance which is used for a protein sequence, 11087877 corresponds to the posi-
tion in the referred sequence, and G>T describes the substitution itself (http:// 
www.hgvs.org/mutnomen/recs.html) [14]. However this nomenclature has not been 
universally adopted yet. Previous nomenclatures sometimes subsist for historical rea-
sons. For example our variant is still found in OMIM as the “FH NAPLES” or 
“Gly544Val”, that is to say with denominations related to the historical context of its 
discovery. In addition, private and disease- or locus-specific databases continue using 
non-conventional representations that enlarge the set of possible nomenclatures. Fig-
ure 2 illustrates the numerous alternative manners of designating a unique genome 
variant in private and public databases. It is worth noting that some of the non-
conventional notations (c) are ambiguous: the first one does not mention the reference 
nucleotide, the third and fourth ones refer to two different versions of the same  
protein. 

b

c

d

a

proteinB, Gly564Val

geneAsynonym,11,108,exon,GT

geneA,11,EXON,108,T,hetero

NP_000518:p.G564V

CCDS12254.1:c.1694G>T

NM_000527.2:c.1787G>T
HGVS syntax

notations
non−conventional

rs28942082               (in dbSNP)

proteinB, Gly544Val

Chr19:11,087,877−11,087,877 G/T

Chr19:11087877 G/T
genome−browser−
like syntax

0014 FH NAPLES   (in OMIM)

SNP001234567        (in HGVBase)
identifiers
public database

NT_011295.9:g.2489679G>T

 

Fig. 2. Various notations or references for the same variant 

Finding intersection between several genomic variation databases is a critical issue 
for genetic diagnosis and  “variome” exploration [15, 16]. However, as shown above, 
this task is not easy because of the amount of alternative and equivalent representa-
tions. Thus a system capable of establishing equivalence i.e. aligning between the 
different representations of a given variant is needed for investigating genome varia-
tions, and for being a basis for further pharmacogenomic studies. 



86 A. Coulet et al. 

2.2   Integrated Solutions 

A first solution for solving the problem of heterogeneous representation of genomic 
variations is to build integrated databases providing a single access to variants per-
taining from various sources. The NCBI dbSNP database lists over 9 million human 
polymorphisms, and constitutes the largest source of variants over the web [17]. In-
deed, together with directly submitted SNP data, dbSNP integrates data from other 
large public databases of variants such as the NCI CGAP-GAI database, the TSC 
(The SNP Consortium, Ltd) variation initiative, HGVBase, HapMap, PharmGKB, 
Perlgen. Furthermore, dbSNP is fully integrated with NCBI databases (GenBank, 
PubMed, LocusLink, Human Genome Project Data) leading to a rich set of data.  

HGVbase (Human Genome Variation Database, formerly HGBase) is the product 
of a collaboration between the Karolinska Institute (Sweden) and the European  
Bioinformatics Institute (UK). It has been constructed as a means for gathering poly-
morphisms from all possible public sources [18]. Thanks to both collection and sub-
mission, this relational database is cataloguing more than 8 million polymorphisms 
and proposes interesting text-based search facilities. HGVbase has been interfaced 
with SRS (Sequence Retrieval System). An originality of this work is that the authors 
propose the first controlled vocabulary, the Mutation Event Controlled Vocabulary1, 
to facilitate polymorphism data integration. Each HGVbase record contains all the 
information necessary to re-construct the variant description in the HGVS standard  
syntax.  

TAMAL (Technology And Money Are Limiting) is based on a materialized data 
warehouse that integrates five SNP sources (HapMap, Perlgen, Affymetrix, dbSNP 
and the UCSC genome browser), and that offers querying facilities through current 
versions of these resources (updated quarterly) in view of facilitating SNP selection 
for genetic study design [19]. To help selecting SNPs that are likely involved in the 
genetic determination of human complex traits, various properties of SNP have been 
integrated such as SNP localisation (in coding regions, in promoters) or haplotype 
tagging. 

LS-SNP (Large-Scale annotation of coding non-synonymous SNPs) is an original 
work aimed at enriching dbSNP annotations of non-synonymous coding SNPs with 
information about protein sequences, functional pathways and comparative protein 
structure models in order to predict polymorphism impacts on produced proteins [20]. 
This resource can be a precious guide for SNP selection before a clinical study.  

The pharmacogenomics knowledge base (PharmGKB) contains data sets linking 
genotype and phenotype information [7]. This integrated resource presents two major 
interests. First, original polymorphisms are directly submitted to PharmGKB as re-
sults of clinical trials, enabling to link them to individual clinical data. Second, 
PharmGKB allows extended navigation through cross-referenced sources such as 
NCBI databanks, UCSC Genome Browser and Gene Ontology. This makes 
PharmGKB a valuable resource for interactively enriching annotations on given vari-
ants. PharmGKB data are structured according to an XML schema that defines the 
relationships between the different handled objects. However, as far as we know, 
PharmGKB is not exploitable for automatic data extraction and mining.  

                                                           
1 http://www.ebi.ac.uk/mutations/recommendations/mutclass.txt 



 SNP-Converter 87 

This brief panorama of integrated databases in the domain of genomic variations 
shows that each project has to solve in some way the problem of integrating heteroge-
neous variant representations. Methods used are rarely explicited since they must fit 
the data model associated to the database, and cannot be reused for other purposes. 
More general propositions have been made to promote integration of variant represen-
tations. A controlled vocabulary (the Mutation Event Controlled Vocabulary quoted 
above) has been proposed by the HGVbase. The Polymorphism Markup Language 
offers the possibility of exchanging data on sequence variations [21]. The associated 
DTD (Document Type Definition) describes polymorphism variation, frequency, 
population, assay, submitter and publication. DDBJ and JBIC recommend the use of 
PML for interoperability of data on SNPs and other genomic variations. Under the 
supervision of the Object Management Group, the SNP object has been precisely 
specified [22]. This work takes into account a large view of the data linked to SNPs in 
existing data sources. The HGVS participates in this effort of knowledge representa-
tion as one of the rare propositions looking at the genetic variation concept, and not 
simply at the representations of variants in databases [14]. It should be noted that the 
unequivocal identification of genomic variants does not mean here unique identifier, 
since the generic syntax proposed by HGVS allows multiple references to various 
types of sequences (chromosomes, contigs, transcripts, proteins). Finally, the XML 
PharmGKB schema presented as an ontology by the authors includes the representa-
tion of domain concepts and their relationships in a structured formalism [23].  

2.3   Semantic Integration 

Converting one SNP format into another one and establishing equivalence between 
variants displaying different representations calls for explicit domain knowledge 
about gene structure, transcript definition, and genetic code. This is one reason lead-
ing us to the design of the SNP-Ontology [9]. Indeed a specific ontology in the field 
of genomic variations is useful, because it embodies the abstract knowledge required 
for data integration and analysis. Existing initiatives mentioned above such as the 
PharmGKB ontology and the OMG SNP specification contributed to the early stages 
of this work. Several additional concepts were defined to provide the SNP-Ontology 
with the capacity of hosting any variant, whatever their description, as individuals 
instantiating the ontology concepts and properties. The SNP-Ontology has been coded 
with the OWL (Web ontology language) formalism and edited with the Protégé 
knowledge base framework [24][25]. OWL is the standard representation language 
for the semantic web. Its foundations are both description logics and web standard 
languages (XML and RDF-S). It allows building a knowledge base equipped with 
reasoning mechanisms such as subsumption, classification, consistency checking and 
instantiation. These mechanisms once plugged in Protégé lead to new inferred knowl-
edge that can enrich the knowledge base. However integrating variant descriptions 
requires handling of concrete data (e.g. string, integer) that is not yet fully allowed by 
the description logic framework [26]. Thus, we have developed the SNP-Converter 
application that can be used either as a standalone application for format conversion 



88 A. Coulet et al. 

purposes, or in the frame of an ontology-driven knowledge base for integrating data-
sets of genomic variants.  

3   The SNP-Converter 

3.1   Inputs and Outputs 

A variant is considered as an observed variation located at a specific position along a 
sequence. The observed variation can be a nucleotide or an amino acid variation de-
pending whether the sequence serving as reference for localisation is nucleic acid or 
protein. This definition, that follows the HGVS nomenclature standard, leads to repre-
sent a variant by four features:  

(i) the identifier of a reference sequence (i.e. its accession number in a public 
sequence database) ;  

(ii) the type of concerned sequence (genomic, coding : cDNA, mRNA or 
protein coded respectively by g., c., r. or p. according to HGVS standards) ;  

(iii) the position of the variant in the reference sequence ; 
(iv) the observed variation (G/T, G >-, ->T, GT>AG, g>u, Gly>Val, etc.). 

Conjunction of these four features yields an unequivocal representation of the variant. 
As mentioned above, a given variant can be represented by several sets of features 
depending on the selected reference sequence identifier. The core of the SNP-
Converter application takes a set of four features as input, and converts them into an 
alternative set of four features representing the same variant. Because most represen-
tations do not explicitly provide the input features, a data preparation step is embed-
ded in the SNP-Converter application. Present  implementation of the preparation step 
allows the extraction of input features from dbSNP, HapMap, HGVBase records (in 
XML format) and from flat files or spreadsheets of two private databases that follow 
non conventional notations such as the first and second ones in figure 2.c. Recipro-
cally the converted output features may be processed to comply with the output for-
mat adapted to their envisaged usage. The SNP-Converter is currently able to produce 
several output formats: a simple text file using HGVS nomenclature, dbSNP XML 
and submission file formats. A typical scenario of SNP-Converter usage is the con-
version of interesting SNPs from a private database into the dbSNP submission file 
format. 

3.2   The Conversion Process 

The SNP-Converter process, shown in Figure 3a, can be decomposed into 4 steps: 
(1) data preparation, (2) conversion of the four input features into pivot features, (3) 
an optional additional conversion into specific output features, and finally (4)  
the edition of output data. A simple instantiation of this process is illustrated in  
Figure 3b. 

 



 SNP-Converter 89 

INPUT
DATA

OUTPUT
FEATURES

OUTPUT
DATA

(1)

FEATURES
INPUT

(2) (3) (4)

reference sequence
Output format selection

FEATURES
PIVOT

Input format description

(4)

Selection of particular
 

Fig. 3a. The SNP-Converter global process 

NT_011295

248976

G>T

g.

11087877

G>T

NC_000019

g.

(3)

CCDS12254

c.

1694

G>T

(4)
NT_011295 : g.  2489769  G>T

(1a) (2)
CCDS12254:c.1694G>T

reference sequencedescription selection
HGVS format HGVS formatSelection of a coding

 

Fig. 3b. Illustration of the enactment of the SNP-Converter process on a given variant  
representation  

(1) The data preparation step consists in extracting the four input features from in-
put data and depends on each specific source format. This preparation step also de-
pends on whether the variant description is explicit (e.g. Genome-browser-like syntax 
or HGVS syntax) or implicit (e.g. database identifier). (1a) When the description is 
explicit, the four input features can be directly extracted by parsing the description 
according to a format-specific scheme. (1b) When the description is implicit, input 
data should first be completed in view of extracting  input features. For example if the 
input data is a dbSNP identifier, it can be used to query the database and extract from 
the variant record the explicit data composing the input features.  

(2) Pivot features consist in the particular set of features obtained for a given vari-
ant when the reference sequence is the complete chromosome sequence (RefSeq ac-
cession number, e.g. NC_000019.8) that includes the input reference sequence. Since 
the pivot sequence type is genomic, the variant position and the nature of observed 
variation must be computed. The input reference sequence is first localized on the 
complete chromosome sequence using alternative data sources. For instance the rela-
tive position of a gene can be found thanks to the gene symbol in the RefSeq com-
plete chromosome entry (“FEATURES/gene” section). Exon genomic positions can 
also be retrieved in the “FEATURES/mRNA” section. When the variant position is 
expressed relative to translation start (ATG), genomic coordinates of coding sequence 
can be retrieved from the NCBI CCDS database. The appropriate coordinate conver-
sion can then be computed to finally produce the position of the variant relative to the 



90 A. Coulet et al. 

complete chromosome sequence. Finally the observed variation must be converted 
into a variation at the genomic level. If the input variation is described at the DNA 
level, this feature remains unchanged. Alternatively, if the observed variation is at the 
mRNA level, uracil must be converted into thymine. An observed variation described 
at the protein level should be converted according to the genetic code. Due to the ge-
netic code degeneration, several codons can code for the same amino acid. Thus the 
conversion from amino acid to nucleic acid variation can lead to more than one set of 
features. The SNP-Converter outputs all these possibilities.  

(3) The next step of reference features conversion is optional since it appears un-
necessary when the desired output format fits to the pivot features. If not, the output 
reference sequence should be selected by the user, and can be DNA, cDNA, mRNA, 
or protein. The conversion process then follows the same rationale as the previous one 
to produce new relative position and observed variation in the new reference repre-
sentation.  

(4) Output data should finally be formatted depending on the purpose of the con-
version. A first possibility is to edit the output features according to the HGVS syntax 
or any other syntax. A second possibility is to build a variant description in a specific 
format for database submission. Finally, another interesting possibility is to enter the 
output data in a knowledge-base-compliant formalism such as OWL to allow its as-
sertion in a knowledge base (see below).  

The SNP-Converter is implemented as a Java application, and has been tested on a 
set of variants composed of the dbSNP variants mapping on chromosome 19, and of 
variants extracted from a private database. For this purpose, dbSNP variants were 
extracted from downloaded dbSNP XML file and other  variants from private text 
files.  The goal was to find which variants from the private database were missing in 
the dbSNP database. The SNP-Converter application allowed us to compare the pivot 
features of the private variants with those of dbSNP variants. This experience allowed 
us to determine the overlapping coverage of both databases, and to identify several 
variants that were not yet submitted to dbSNP. 

4   The SNP-Converter as a Wrapper for Semantic Integration 

The SNP-Ontology (see section 2.3) plays the role of a coherent domain-specific 
global schema for a knowledge-base. We have made a mapping between the four fea-
tures handled by the SNP-Converter and the SNP-Ontology concepts allowing the 
SNP-Converter to assert variants as individuals in the knowledge base. Since these 
four features are extracted from input data, the whole process leads to an indirect 
mapping of source schemas on the ontology. In practice we found relevant for any 
new variant, to insert in the SNP-knowledge base, not only its original set of features 
(for sake of traceability), but also the pivot features computed by the SNP-Converter. 
Thanks to these pivot features, the SNP-Converter is capable of qualifying as equiva-
lent variants initially represented by distinct descriptions (see Fig. 4). The equivalence 
checking performed by the SNP-Converter is used here as a procedural extension of 
description-logics-based reasoners, aimed at enriching the knowledge base. 

 
 



 SNP-Converter 91 

dbSNPsnp_base_2snp_base_1

274 55 377

671 original individuals +
706 assertions =

The GeneA−SNP−knowledge base

existence ?

variant assertion

GeneA variants

The SNP−Converter

35 equivalent individuals
 

Fig. 4. Schematization of the use of the SNP-Converter application as a wrapper coupled to a 
knowledge base 

Figure 4 also shows the result of an experience carried on variants of a specific 
gene (named here geneA). Three sets of data were processed by the SNP-Converter 
application : 274 and 55 variants from private databases snp_base_1 and snp_base_2 
respectively, and 377 variants from dbSNP. Among the 706 assertions created by the 
wrapper, 671 could be qualified as original individuals, and 35 were found equivalent 
to existing individuals. 

5   Conclusion and Discussion 

The SNP-Converter application has been developed to face the heterogeneity problem 
in genomic variation representation. The SNP-Converter can be used standalone to 
pass from one variation description to another. As such it constitutes a valuable tool 
for several use-cases: confronting private and public variant data, preparing submis-
sion of new variants to public databases, facilitating variant annotation retrieval from 
heterogeneous databases, guiding the choice of relevant variants to include in clinical 
trials, etc. The core of the SNP-Converter was designed to be generic thanks to the 
mapping with the SNP-Ontology. However, the handling of new sources requires 
some ad hoc adaptations for driving the extraction of the input features. This task will 
be facilitated by an administration interface. It should be noted that the SNP-
Converter works with constant RefSeq versions and therefore is faced to the common 
problem of managing sequences pertaining to different assemblies. 

With respect to the KDD process, our objective is to settle a semantic frame facili-
tating semantic data integration, data mining and incremental knowledge acquisition. 



92 A. Coulet et al. 

In particular we consider semantic data integration as the design of an ontology-based 
knowledge base. This work demonstrates the importance and necessity of adequate 
wrappers preceding the semantic data integration stage as a consequence of the limits 
of existing knowledge management tools. 

Our methodology differs from already described integrated solutions (see Sect. 2) 
and more general ones such as BioMart [27] or YeastHub [28] since most of these 
approaches are limited to facilitating integrated access to heterogeneous data whereas 
our goal is to facilitate data mining and integration of data-mining results in a knowl-
edge base. The work reported here constitutes a proof of concept limited to one of the 
pharmacogenomics triangle summits (see Fig. 1), and to the first step of the KDD 
process.  Nevertheless it allows us to proceed in the data mining process. Complete 
demonstration will necessitate extension of the ontology to include the two other 
summits (drug and phenotype) and the testing of our methodology for these two  
domains. 

Acknowledgement 

This work has been partly funded by the EUREKA-labeled GenNet research and de-
velopment contract between KIKA medical, PhenoSystems and Loria-CNRS. AC 
benefits from a CIFRE fellowship. Special thanks to Romain Demoustier from KIKA 
medical and to David Atlan from Phenosystems for stimulating discussions. 

References 

1. Kruglyak,L., Nickerson,D. Variation is the spice of life. Nat Genet. 27, 3 (2001) 234-6. 
2. Frawley,W., Piatetsky-Shapiro,G., Matheus,C. Knowledge Discovery in databases: An 

Overview. Knowledge Discovery in Databases, AAAI/MIT Press.(1991) 1-30. 
3. Janetzko,D., Cherfi,H., Kennke,R., Napoli,A., Toussaint,Y. Knowledge-based Selection of 

Association Rules for Text Mining. 16h European Conference on Artificial Intelligence, 
ECAI'04, Valencia (2004). 

4. Vetere,G., Lenzerini,M. Models for Semantic. Interoperability in Service Oriented Archi-
tectures, IBM Systems. Journal, 44 (2005). 

5. Gruber,T.R. A Translation Approach to Portable Ontology Specifications. Knowledge Ac-
quisition. 5 (1993)  199-220. 

6. Evans,W., Relling,M. Pharmacogenomics: moving toward individualized medicine, Na-
ture. 29 (2004) 464-468. 

7. Klein,T., Chang,J., Cho,M., Easton,K., Fergerson,R., Hewett,M., Lin,Z., Liu,Y., Liu,S., 
Oliver,D. et al. Integrating genotype and phenotype information: an overview of the 
PharmGKB project. Pharmacogenom. J. 1 (2001) 167–170. 

8. Marsh,S., Kwok,P., McLeod,H. SNP databases and pharmacogenetics: great start, but a 
long way to go. Hum Mutat. 20, 3 (2002) 174-9. 

9. Coulet,A., Smaïl-Tabbone,M., Napoli,A., Benlian,P., Devignes M.D. SNPOntology for 
semantic integration of genomic variation data. ISMB 2006, Fortaleza. [OnLine]. 
https://hal.inria.fr/inria-00067863 

10. Anand,S., Bell,D., Hughes, J. The role of domain knowledge in data mining, Conference 
on Information and Knowledge Management CIKM’95, Baltimore, USA (1995). 



 SNP-Converter 93 

11. Euler,T., Scholz,M. Using Ontologies in a KDD workbench, ECML/PKDD’04 Workshop 
on Knowledge Discovery and Ontologies (KDO’04), Pisa (2004). 

12. Catarci,T., Lenzerini,M. Representing and using inter-schema knowledge in cooperative 
information systems. Journal of Intelligent and Cooperative Information Systems. 2 (1993) 
375-398. 

13. Levy,A. Logic-Based Techniques in Data Integration Logic Based Artificial Intelligence. 
Jack Minker. Kluwer Publishers (2000). 

14. den Dunnen,J., Antonarakis,S. Mutation nomenclature extensions and suggestions to de-
scribe complex mutations: a discussion. Hum Mutat. 15 (2000)  7–12. 

15. den Dunnen,J., Paalman,M. Standardizing mutation nomenclature: why bother? Hum Mu-
tat. 22 (2003) 181–182. 

16. Cotton,R.G.H., Kazazian,H.H. Toward a human variome project. Hum Mutat. 26,6 (2005) 
499. 

17. Sherry,S., Ward,M., Sirotkin,K. dbSNP—Database for Single Nucleotide Polymorphisms 
and Other Classes of Minor Genetic Variation. Genome Res. 9 (1999) 677–679. 

18. Fredman,D., Munns,G., Rios,D., Sjoholm,F., Siegfried,M., Lenhard,B., Lehvaslaiho,H., 
Brookes,A. HGVbase : a curated resource describing human DNA variation and pheno-
type relationships. Nucleic Acids Res. 32 (2004) D516-9. 

19. Hemminger,B., Saelim,B., Sullivan,P. TAMAL: an integrated approach to chosing SNPs 
for genetics studies of human compex traits. Bioinformatics. 22 (2006)  626-627. 

20. Karchin,R., Diekhaux,M., Kelly L., Thomas D., Pieper,U., Eswar,N., Haussler,D., Sali,A. 
LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple in-
formation sources. Bioinformatics. 21 (2005) 2814-2820. 

21. Sugawara,H., Mizushima,H., Kano,T., Shigemoto,Y., Hashimoto,Y., Tomabechi,I., Saka-
gami,N. et al Polymorphism Markup Language (PML) for the interoperability of data on 
SNPs and other sequence variations, 19th International CODATA Conference (2004). 

22. OMG Single Nucleotide Polymorphisms specification (2005) [Online] 
http://www.omg.org/cgi-bin/doc/dtc/05-02-06.pdf. 

23. Oliver,D., Rubin,D., Stuart,J, Hewett,M., Klein,T., Altman,R. Ontology development for a 
pharmacogenetics knowledge base. Pac Symp Biocomput. (2002)  65-76. 

24. Horrocks,P., Patel-Schneider,F., van Harmelen,F. From SHIQ and RDF to OWL: The 
making of a web ontology language, Journal of Web Semantics, 1, 1 (2003)  7-26. 

25. Noy,N., Sintek,M., Decker,S., et al. Creating Semantic Web contents with Protege-2000. 
IEEE Intelligent Systems 16. (2001) 60-71. 

26. W3C Web Ontology Working Group (WOWG), (2004) Owl web ontology language se-
mantics and abstract syntax. W3C recommendation [Online]. http://www.w3.org/TR/owl-
ref/. 

27. Kasprzyk,A., Keefe,D., Smedley,D., London,D., Spooner,W., Melsopp,C., Hammond,M., 
Rocca-Serra,P., Cox,T. Birney,E. EnsMart: A Generic System for Fast and Flexible Ac-
cess to Biological Data. Genome Res. 14 (2004) 160-169. 

28. Cheung,K.H., Kevin Y. Yip,K.Y., Smith,A., deKnikker,R., Masiar,A., Gerstein,M. Yeast-
Hub: a semantic web use case for integrating data in the life sciences domain, Bioinfor-
matics.21 (2005)  i85-i96. 28.  

 
 



U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 94 – 103, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

SABIO-RK: Integration and Curation of Reaction 
Kinetics Data 

Ulrike Wittig, Martin Golebiewski, Renate Kania, Olga Krebs, Saqib Mir,  
Andreas Weidemann, Stefanie Anstein, Jasmin Saric, and Isabel Rojas 

Scientific Databases and Visualization Group, EML Research gGmbH,  
Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany 
Ulrike.Wittig@eml-r.villa-bosch.de 
http://sabiork.villa-bosch.de/ 

Abstract. Simulating networks of biochemical reactions require reliable kinetic 
data. In order to facilitate the access to such kinetic data we have developed 
SABIO-RK, a curated database with information about biochemical reactions 
and their kinetic properties. The data are manually extracted from literature and 
verified by curators, concerning standards, formats and controlled vocabularies. 
This process is supported by tools in a semi-automatic manner. SABIO-RK 
contains and merges information about reactions such as reactants and 
modifiers, organism, tissue and cellular location, as well as the kinetic 
properties of the reactions. The type of the kinetic mechanism, modes of 
inhibition or activation, and corresponding rate equations are presented together 
with their parameters and measured values, specifying the experimental 
conditions under which these were determined. Links to other databases enable 
the user to gather further information and to refer to the original publication. 
Information about reactions and their kinetic data can be exported to an SBML 
file, allowing users to employ the information as the basis for their simulation 
models. 

1   Introduction 

The biosciences have undergone some dramatic changes in the last few years. Novel 
lab approaches like high-throughput methods enable scientists to rapidly produce an 
enormous amount of data. For researchers this poses problems connected with 
retaining an overview of these data and accessing them. Thus one of the biggest 
challenges in biological science at present is to achieve data comparability and ease of 
access for the scientific community. To attain this goal, experimental data from 
different sources need to be standardized and integrated into databases.  

At the moment only a small number of databases exist which contain information 
about biochemical reaction kinetics. The BRENDA enzyme database [1] offers a 
comprehensive list of kinetic parameters based on literature information. UniProt [2] 
started to include kinetic parameters as comments related to biophysicochemical 
properties, also manually extracted from publications. The BioModels database [3] 
stores published mathematical models of biological interest annotated and linked to 
relevant data resources (e.g. publications or databases). The models include kinetic 



 SABIO-RK: Integration and Curation of Reaction Kinetics Data 95 

laws and their parameters represented in SBML (Systems Biology Mark-up 
Language) format [4] and can be used for simulations of biochemical reactions or 
networks. 

In order to compare kinetic data and develop biochemical network models, kinetic 
parameters need to be consistently described and related to kinetic mechanisms, 
equations representing the kinetic laws and environmental conditions. The known 
mechanisms of biochemical reactions should be reflected in mathematical formulas, 
which have to be linked to the corresponding parameters, such as kinetic constants 
and concentrations of each reaction participant. As kinetic constants highly depend on 
environmental conditions, they only can be specified completely by describing these 
conditions used for determination. Data sets based on an experiment assayed under 
similar experimental conditions should be associated to each other to facilitate the 
comparison. Therefore, users interested in information about reaction kinetics require 
databases that merge and structure all these data. 

The SABIO-RK (System for the Analysis of Biochemical Pathways - Reaction 
Kinetics) database is designed to meet these requirements and to support researchers 
interested in information about biochemical reactions and their kinetics. This report 
will mainly focus on the database content, integration and curation processes. 
Modelling of the database and the retrieval of data by database searching will be 
briefly discussed. 

2   Data Integration 

SABIO-RK represents an extension of the SABIO biochemical pathway database also 
developed at EML Research [5]. Figure 1 represents a simplified schema of the main 
database objects and their relations in SABIO and SABIO-RK. SABIO contains 
information about biochemical pathways, reactions and their participants (enzymes, 
reactants etc.). These data are connected with specific protein information, organisms 
or cellular locations. SABIO-RK combines the general data about biochemical 
reactions stored in SABIO with information about their kinetic properties. The type of 
kinetic law and its representation in a formula is given if provided in the literature. 
This also includes effectors (e.g. cofactors, activators or inhibitors) of the reactions 
and their type of interaction (e.g. competitive or non-competitive inhibition). The 
kinetic laws are represented with their parameters, including their measured values. 
Since many of the publications only contain kinetic constants (e.g. Km, kcat or 
Vmax) but have no description of the kinetic law type, these parameter values are also 
inserted independent from a kinetic law type.  

Additionally the database contains descriptions of the experimental conditions (e.g. 
pH, temperature, and buffer) for the measured parameter values. In the buffer 
description all components of the assay are represented including coupled enzyme 
assays.  

In order to establish a broad information basis, data from different sources are 
integrated into SABIO-RK (Figure 1). Most of the reactions, their associations with 
biochemical pathways and their enzymatic classifications (EC classifications [6]) are 
downloaded from the KEGG (Kyoto Encyclopedia of Genes and Genomes) database 
[7] and stored in SABIO. In contrast, the kinetic data contained in SABIO-RK are 



96 U. Wittig et al. 

manually extracted from scientific articles and verified by curators. At the moment it 
is very difficult to extract this information automatically, such as by the use of text 
mining technologies, given that most of the data are highly scattered through various 
publications and are frequently found in tables, formulas or graphs. However, we are 
working on the development of support tools, one of them for the identification of 
synonyms of chemical compound names, as we will describe in section 3. 

SABIO

Pathways
Reaction

Enzymes

Reactants

Organisms

Extraction
KEGG

UniProt

Other DBs

SABIO-RK
Concentrations

Kinetic Law
Environment

Reactants

Parameters

Kinetic
Data
(publ.)

Kinetic
Data
(publ.)

PubPub

SABIO

Pathways
Reaction

Enzymes

Reactants

Organisms

ExtractionExtraction
KEGG

UniProt

Other DBs

SABIO-RK
Concentrations

Kinetic Law
Environment

Reactants

Parameters

SABIO-RK
Concentrations

Kinetic Law
Environment

Reactants

Parameters

Kinetic
Data
(publ.)

Kinetic
Data
(publ.)

Kinetic
Data
(publ.)

Kinetic
Data
(publ.)

PubPub

 

Fig. 1. Population, content and schematic relation of SABIO and SABIO-RK. SABIO contains 
general information about biochemical pathways and reactions in different organisms, 
including details about corresponding enzymes and reactants. Most of these data are collected 
from other databases like KEGG and UniProt. SABIO-RK extends SABIO by storing 
information about the reactions’ kinetic properties, such as the kinetic laws with their 
corresponding parameters and environmental conditions under which they were determined.  

As standards for publishing data of biochemical reactions and reaction kinetics are 
lacking, the curators are faced with problems like synonymic or aberrant notations of 
compounds and enzymes, multiplicity of parameter units and missing information 
about assay procedures and experimental conditions. During the curation process, we 
unify and structure the data consistently in order to facilitate the comparison of the 
kinetic data obtained under different experimental conditions or from different 
organisms, tissues etc. Furthermore structured data enable the user to understand the 
behaviour of a biochemical reaction under environmental changes like for example 
increase of temperature or pH variations. 

The information source of each database entry is clearly shown and linked to the 
PubMed [9] database in order to allow the user to refer to the original paper to obtain 
additional information about the experiment described. 

Systematic names of organisms named in the publication are identified according 
to the NCBI taxonomy [8] and additional information about specific strains of 
organisms is stored in the database. If the enzyme of the original organism was 



 SABIO-RK: Integration and Curation of Reaction Kinetics Data 97 

expressed in another organism, the host organism is represented in the general 
comment line of an entry. 

The extraction work is done by students using a web-based interface to enter the 
extracted information into a temporary SQL database. A list of publications, expected 
to contain kinetic data was obtained by keyword searches in the PubMed database and 
is used as the basis for data extraction. Before transferring the data to the final 
database SABIO-RK, they are checked, complemented and verified by a team of 
biological experts to eliminate possible errors and inconsistencies. 

As of May 2006, data from more than 1400 publications were evaluated from 
which 820 were found to contain useful kinetic data that were extracted and inserted 
into the intermediate database. About 65% are already curated and inserted into the 
SABIO-RK database. From one publication more than one database entry can arise if 
different reactions, enzymes, environmental conditions etc. are connected to measured 
parameter values. Currently SABIO-RK contains about 5100 curated single database 
entries referring to about 190 organisms, 1100 different reactions, and 320 enzymes 
catalysing these reactions. Each database entry comprises at least one kinetic 
parameter. Since there are many publications processed where no information about 
the kinetic law is addressed, currently in SABIO-RK only 30% of all entries are 
related to a kinetic law formula. Of the about 20.000 chemical compound names 
included in the database, 13.470 refer to different compounds, i.e. the average number 
of alternative names per compound is 1.5. 

SABIO-RK only refers to the original source of kinetic data compared parameter 
values extracted from a referenced paper are not linked to this publication. To avoid 
redundancies, copying of errors and linking to disparate experimental conditions, the 
original source of the referenced values is included in the database as separate entries. 
However, a comparison of the parameter values is possible since entries from 
different sources are linked by the same reaction or enzyme, assuming that the 
experimental conditions are the same.  

Links to the UniProt database enables the user to gather further information about 
proteins corresponding to the enzymes. 

3   Curation Process 

The curation of extracted data is used to achieve correctness and consistency within 
the database. Already existing standards for data formats are applied as well as new 
standards are defined if necessary. For example, the unification of parameter units or 
chemical compound names involves existing standards as the SI system for unit 
notation or the nomenclature recommendations for chemical compounds of the 
International Union of Pure and Applied Chemistry (IUPAC). In contrast to, for 
enzyme specifications (mutants, isoforms, etc.) database-internal norms are assigned 
additionally to the enzyme classification (EC) system of the International Union of 
Biochemistry and Molecular Biology (IUBMB). Already existing controlled 
vocabularies are used for the representation of organisms [8], tissues [1], cell 
locations [1] etc. 

During the curation process, most of the data are unified and structured, with the 
exception of some information which is stored as comment lines or descriptions, such 



98 U. Wittig et al. 

as in the case of the buffers’ compositions. The description of a buffer can be very 
complex containing for example information about coupled enzyme reactions and 
synthetic or labelled derivatives of physiological compounds. Therefore, currently 
information about the buffer composition is stored as a free text. Additional comment 
lines also contain information about host organisms in which proteins are expressed 
(e.g. recombinant enzymes expressed in Escherichia coli), or information about the 
enzyme proteins, especially the protein name if no EC classification is known. 

The fact that chemical compounds often have multiple alternative names 
complicates the work of the database curators. They need to find out whether a 
compound described in the publication is already contained in the database, possibly 
with synonymic names, or it is necessary to include this new compound in the 
database. To address this problem we have developed a tool for the linguistic analysis 
of chemical terminology, more precisely the names of organic compounds, named 
CHEMorph [10]. CHEMorph analyses systematic and semi-systematic names, class 
terms, and also otherwise underspecified names, by using a morpho-syntactic 
grammar developed in accordance with IUPAC nomenclature [11]. It yields an 
intermediate semantic representation of a compound which describes the information 
encoded in a name. The tool provides SMILES strings [12] for the mapping of names 
to their molecular structure and also classifies the terms analysed. The general process 
together with an example analysis is shown in Figure 2. The systematic compound 
name 7-hydroxyheptan-2-one is transformed into a semantic representation which 
describes the following: The compound compd with its three parameters in 
parentheses, which are the formal descriptions of (i) the skeleton structure, (ii) the 
name's prefix, and (iii) the name's suffix. From this semantic expression, the 
corresponding SMILES string [CC(=O)CCCCCO] and the class list is calculated. 
Currently by matching the yielded SMILES strings, CHEMorph can be used to 
identify synonymous compound names in order to check if a compound is already 
contained in SABIO-RK. Future developments will include the matching of chemical 
structures generated from SMILES strings. With the help of additional Natural 
Language Processing (NLP) methods, the existing compounds in SABIO-RK can be 
analyzed for wrong synonyms and multiple entries. By this, the completeness and 
consistency of the compound data can still be improved.  

Also organisms often have synonymic names. They can be described in the 
literature by their common or systematic name. The SABIO-RK database refers to the 
NCBI taxonomy and uses systematic names to be able to compare data. Since some 
authors only give the common name of an organism the curator has to deduce the 
systematic name. For example the organism described as “rat” can be transferred to 
Rattus sp. or Rattus norvegicus where the latter is mainly used in laboratories. The 
curators have to decide if the general organism name is used or not.  

Units of kinetic parameters and concentrations can be written in different ways and 
often have multiple scales. Different systems of standardisation exist in parallel, for 
example enzyme activities can be noted in katal (mol/s), international units 
(μmol/min), mg/min or similar units. This makes the comparison of the data quiet 
difficult. Therefore a list of scaled and standardized units was established within 
SABIO-RK based on the recommendations of the International System of Units (SI) 
[13]. All parameter units and concentrations stored refer to a list that relates 
synonymic notations with the correct SI standards. 



 SABIO-RK: Integration and Curation of Reaction Kinetics Data 99 

For consistency and to avoid duplicate entries, lists of compounds, organisms, 
tissues, compartments, kinetic law types and parameter units already existing in the 
SABIO-RK database are provided for selection at the input interface. These lists also 
contain synonyms referring to the same content to enable the search for alternative 
names of compounds, tissues etc. These may mean that the information presented to 
the database user is not exactly that included in the paper because the entries are 
presented with recommended names, however the user can always obtain the 
synonyms of the entries with multiple names. Already existing reactions can be 
searched in the database by defining one or two reaction participants.  

 

Fig. 2. Overview of the CHEMorph system to support manual database curation. A chemical 
compound name is parsed and gets a semantic representation assigned, which is taken as a basis 
to calculate a SMILES string and the classes the compound belongs to. 

Enzymes variants catalysing the reactions are distinguished by a description of 
their subform, like wildtype or mutant protein species. They are named as wildtype or 
mutant followed by their name. Different isoforms of an enzyme are also named as 
wildtype followed by the name or abbreviation of the isoform. Furthermore, by 
including the specification of one or more accession number(s) of the UniProt 
database (if available), a direct link is provided to the properties of the enzyme.  

Additionally, the curators are confronted with missing or only partial information 
in the literature. For example a reaction definition can be incomplete supposing that 
only substrates of reactions are named without a definition of the reaction products. 
Knowing the chemical mechanism of the enzymatic reaction an equation could be 



100 U. Wittig et al. 

completed manually by biochemical experts, but this work could be very time-
consuming and furthermore the result could be imprecise. Therefore general 
compound classes representing specific chemical properties are used as reaction 
participants. A tool developed for the SABIO biochemical pathway database allows 
for the classification of chemical compounds based on their functional groups using 
SMILES strings [14]. Different levels of compound classes based on this compound 
classification system can deduce more information about the unknown products of a 
reaction. For compounds for which a SMILES string cannot be assigned, e.g. 
underspecified or class names such as deoxysugar CHEMorph can be used for a 
classification based on the name. 

Sometimes, publications contain incomplete datasets, i.e. not all parameters are 
measured or initial concentrations of reaction participants (reactants, effectors or 
enzymes) are missing. For these cases, SABIO-RK contains all parameters or 
concentrations required for a complete kinetic formula, independent of the existence 
of the corresponding values. Missing values are left blank or represented by null 
values. In this way, when exporting the information in SBML the user maintains a 
reference to all parameters, with or without values. 

One major point is that the database only contains information that is mentioned in 
the corresponding paper. There is neither any interpretation of data by the biological 
experts, nor the addition of further information. For example, if the authors describe 
the kinetic mechanism of the reaction as competitive inhibition and no explicit 
formula is given in the publication, the SABIO-RK database will not show a kinetic 
formula but the kinetic law type named Competitive inhibition.    

4   Search and Retrieval 

The web-based user interface of SABIO-RK (Figure 3) enables the user to search for 
reactions and their kinetics by specifying characteristics of the reaction. These 
characteristics may include biochemical pathways in which the reaction participates, 
reactants of the reaction (substrates and products), classification of the enzymes 
catalysing the reaction and organisms, tissues or cellular locations in which the 
reaction takes place. The search for kinetic data can be further specified by the 
experimental conditions used for their determination (currently only pH value and 
temperature), which are considered solely for the retrieval of kinetic data. The system 
retrieves all entries satisfying the given criteria and indicates whether kinetic 
information for the associated reaction under the search criteria is specified 
(organism, tissue, cellular location and experimental conditions). Apart from this, the 
system also indicates whether there are kinetic data available for the enzymes 
catalysing each reaction. This approach has been selected to support the variations in 
the definition of the reactions composing a pathway, e.g. where a reaction can be 
substituted for by a very similar reaction with a slight change in the reactants. The 
next version of the interface will also enable the user to search for networks or paths 
of reactions between two compounds or enzymes. The kinetic data can then be 
viewed and selected for export in SBML format. Reactions with no kinetic data can 
also be included in the SBML file.  
 



 SABIO-RK: Integration and Curation of Reaction Kinetics Data 101 

 

Fig. 3. SABIO-RK database entry. An example data set represents a specified reaction 
including kinetic data, experimental conditions and additional information extracted from a 
publication. 

5   Summary 

The SABIO-RK database has been designed to meet the Systems Biology community 
requirements. It aims to support modelers with high quality data in setting-up in-silico 
models describing biochemical reaction networks. The database enables complex 
searches for reactions, parameters, etc. and uses existing or defines new standards for 
data formats. Selected kinetic data can be exported in SBML format to build models 
for the simulation of complex biochemical processes. SABIO-RK also bundles 
information for researchers interested in comparing reaction kinetic data originating 
from different sources. 



102 U. Wittig et al. 

6   Future Directions 

In future, not only kinetic data from published literature will be inserted into the 
database but also data directly entered by scientists doing the lab experiments. Thus, 
all the needed information can be given by the experimenters and no information is 
lost. In doing so, users would be able to directly compare their own experimental 
results in SABIO-RK with kinetic data extracted from literature. Furthermore detailed 
descriptions of the kinetic reaction mechanism will be included in the near future to 
give the opportunity to represent kinetic properties of sub-reactions or binding 
mechanisms of enzymes in the database. Finally, data export functions of the user 
interface will be expanded, since a lot of the information stored in SABIO-RK can not 
yet be formally described in SBML. 

Currently SABIO-RK contains mainly metabolic reactions we aim in the near 
future to incorporate more signalling reactions. Here the difficulty lies in the 
representation of the signalling reactions, i.e. multiplicity of states of a compound and 
general descriptions of compounds or compound families. 

In order to improve the support to modeller, we are working on a visual display of 
the networks been set-up by the users, using this platform for present different types 
of information, such as the existence or not of kinetic information under certain 
experimental conditions.  

Acknowledgement 

The project is funded by the Klaus Tschira Foundation and partially by the German 
Research Council (BMBF). We would also like to thank the members of the 
Bioinformatics and Computational Biochemistry and the Molecular and Cellular 
Modelling Groups of EML Research for their helpful discussions and comments. Last 
but not least, we thank all the student helpers, who have contributed to the population 
of the database.  

References 

1. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) 
BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res, 
32, D431-3 

2. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E,  
Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O'Donovan C, Redaschi N,  
Yeh LS (2005) The Universal Protein Resource (UniProt). Nucleic Acids Res, 33, D154-
D159 

3. Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, 
Schilstra M, Shapiro B, Snoep JL, Hucka M (2006) BioModels Database: a free, 
centralized database of curated, published, quantitative kinetic models of biochemical and 
cellular systems. Nucleic Acids Res, 34, D689-91 



 SABIO-RK: Integration and Curation of Reaction Kinetics Data 103 

4. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, 
Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, 
Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, 
Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, 
Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, 
Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) 
The systems biology markup language (SBML): a medium for representation and 
exchange of biochemical network models. Bioinformatics, 19, 524-31 

5. Rojas I, Bernardi L, Ratsch E, Kania R, Wittig U, Saric J (2002) A database system for the 
analysis of biochemical pathways. In Silico Biol 2,0007 

6. IUBMB: http://www.chem.qmul.ac.uk/iubmb/enzyme/ 
7. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, 

Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in 
KEGG. Nucleic Acids Res, 34, D354-7 

8. NCBI Taxonomy: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Taxonomy 
9. PubMed: http://www.pubmed.gov 

10. Anstein S, Kremer G, Reyle U (2006) Identifying and Classifying Terms in the Life 
Sciences: The Case of Chemical Terminology. Proceedings of the Fifth International 
Conference on Language Resources and Evaluation (LREC). To appear 

11. IUPAC: http://www.chem.qmul.ac.uk/iupac/ 
12. Weininger D (1988) SMILES, a chemical language and information system. 1. 

Introduction to methodology and encoding rules. J Chem Inf Comput Sci, 28, 31-36 
13. International System of Units (SI): http://www.bipm.fr/en/si/ 
14. Wittig U, Weidemann A, Kania R, Peiss C, Rojas I (2004) Classification of chemical 

compounds to support complex queries in a pathway database. Comp Funct Genom, 5, 
156-62 

 



U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 104 – 113, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

SIBIOS Ontology: A Robust Package for the Integration 
and Pipelining of Bioinformatics Services 

Malika Mahoui1, Zina Ben Miled2, Sriram Srinivasan3,  
Mindi Dippold1, Bing Yang2, and Li Nianhua2 

1 School of Informatics, IUPUI 
{mmahoui, mimeie}@iupui.edu 

2 Department of Electrical and Computer Engineering, IUPUI 
{zmiled, niali, yanbing}@iupui.edu 

3 Department of Computer and Information Sciences, IUPUI 
srsriniv@iupui.edu 

Abstract. The recent technological advancements in biological research have 
allowed researchers to advance their knowledge of the domain far beyond 
expectations. The advent of easily accessible biological web databases such as 
NCBI databases and associated tools such as BLAST are key components to 
this development. However, with the growing number of these web based 
biological research tools and data sources, the time necessary to invest in 
becoming a domain expert is immense. Therefore, it is important to allow for 
easy user deployment of the wealth of available data sources and tools 
necessary to conduct biological research. In this paper we discuss an approach 
to create and maintain a robust ontology knowledge base that serves as the core 
for SIBIOS, a workflow based integration system for bioinformatics tools and 
data sources. Further, deployment of the ontology in various components of 
SIBIOS is discussed. 

Keywords: Data integration, scientific workflows, ontologies, fault tolerance.  

1   Introduction 

Data integration and service discovery in the Life Sciences are key challenges that 
impede discoveries in biology and bioinformatics. The necessity in retrieval of 
available data that are generated by the technologically evolving field of biology and 
bioinformatics has resulted in introduction of more supporting tools. For example, a 
user may be interested in a particular gene such as BRAC1 Human Gene [1]. The user 
may use GENBANK [2], a public nucleotide sequence repository to retrieve the gene 
sequence. The results of this search can be given to BLAST [3] to find additional 
genes with similar conserved regions. The next step may be the translation of the gene 
sequence found into 6 reading frames by TRANSEQ [4] to find proteins of interest. 
Finally, the structure and functional motifs of the protein may need to be studied via 
services such as PRINTS [5] and FINGERPRINTSCAN [6] in order to find additional 
information related to the effects of mutations in the BRAC1 gene [1]. The process is 
known as in-silico experiment and involves a mixture of database and tools deployed 
in a workflow fashion. In-silico experiments take time and require sophisticated 
expertise from biologists due to two main reasons. In one hand, data sources and 



 SIBIOS Ontology 105 

bioinformatics tools hereafter referred as bioinformatics services lack a registry 
mechanism by which researchers are able to retrieve the services needed for their 
experiments, just by relying on a set of metadata for service description provided as 
part of service registration. As a result only a handful list of databases such as 
GenBank [2] and SwissProt [7], and a limited number of bioinformatics tools such as 
Blast [3] are used by the research community; while hundreds of other services [8] 
offering valuable quality data and analysis capabilities remain under-utilized. On the 
other hand, the distributed nature and heterogeneity of bioinformatics services at the 
syntactic as well as at the semantic levels render their manipulation and deployment 
cumbersome and time consuming. Hence researchers need to continuously work on 
the interoperability between services by data copying and pasting, and when 
necessary performing data formatting and data filtering operations. Therefore there is 
a great value in automating the process of service selection, service composition and 
service invocation when working with in-silico experiments. 

Several integration systems are being proposed to assist researchers in conducting 
their analyses [9, 10, 11, 12, 13, 14]. These initiatives can be broadly classified under 
either a warehouse approach or a wrapper based approach. A global schema is used to 
reconcile service heterogeneity in warehouse solutions by having copies of 
bioinformatics services at the server hosting the integrating system. Solutions based 
on the wrapper approach often use ontologies as the basis for their integration 
solutions [10, 11, 15, 16, 17]. SIBIOS, the system for the integration of bioinformatics 
services falls into the latter approach [13, 15, 18]. 

This paper describes the main challenges faced during the design and the 
maintenance of SIBIOS ontology. It also describes the ontology features to support 
easy deployment of SIBIOS system by researchers. 

Section 2 briefly describes the main features of SIBIOS. The ontology design will 
be detailed in Section 3. Section 4 describes how the ontology is deployed within 
SIBIOS system. Discussion on related and future work is presented in Section 5. 

2   Overview of SIBIOS Architecture 

SIBIOS operates in a distributed client-server environment in order to facilitate 
service selection and dynamic execution of workflows [18]. The main components of 
SIBIOS architecture are highlighted in figure 1. Workflow building is aided by the 
service composition module. The tasks of service composition are twofold: assist the 
user in selecting the appropriate services which compose the workflow and ensuring 
correct pipelining of services. Correct pipelining of services ensures that a service s2 
can be composed after service s1 only if service s2 is able to use the output of service 
s1 as input parameters. Service selection offers two options for the user to select 
services for the workflow. The semi-automated mode of service selection offers a step 
by step process where the user selects the services that are needed and assembles the 
workflow. In the second alternative the user will submit a high level description of the 
workflow that will be passed on to the automated service composition. This latter 
module will generate a list of potential workflows from which the user will select the 
most appropriate one for execution. The fault tolerance module enhances system 
reliability during workflow execution by the workflow enactment.  



106 M. Mahoui et al. 

 

Fig. 1. SIBIOS Architecture 

The ontology design and supporting applications described in the following 
sections are advancements to the SIBIOS system described in [13, 15, 18]. These 
enhancements aim into facilitating the ontology maintenance as new services are 
added to the system. In addition the ontology is deployed to support new components 
added to SIBIOS system. 

3   Ontology Design 

3.1   Service Oriented Approach 

As in SIBIOS bioinformatics services constitute the building blocks of workflows, a 
service centric approach is adopted for the design of SIBIOS ontology. The purpose 
of the ontology is to define services at different levels so that the description can 
support both service composition and service invocation. 

The role of the ontology at the service invocation level is to provide a common 
terminology to describe all input and output parameters of services. For example, by 
mapping one of the output parameters of Genbank [2], namely accession, and one of 
the input parameters of SwissProt [7], namely EC, to the ontology term EC_number, 
it is possible to compose a workflow where SwissProt service can be scheduled to 
execute on the input of GenBank service. 

In the context of service composition, the role of the ontology is (1) to support a 
service description that allows researchers with different bioinformatics expertise to 
find the services needed for their experiments; (2) and to serve as a mapping model to 
ensure correct composition between services. To allow researchers to search for 
services beyond just browsing through a list of names, the description of services has 
to be enriched with metadata that can be used as the basis for formulating their service 
needs. For example consider a user who wants to find a service that performs multiple 
sequence alignment. The ontology should be modeled in a way so that it allows the 
user to perform an “advanced” search feature where he/she can search for services 
based on the task they perform. 



 SIBIOS Ontology 107 

 

Fig. 2. Domain Ontology Hierarchy 

In the context of ontologies, properties are used to describe the set of features by 
which a service can be searched for. Based on the study undertaken in [16, 17] 
classifying bioinformatics tasks; as well as our survey of both existing integration 
systems and a large number of services in areas such as sequence analysis and 
database searches, five properties emerged for service description. These properties 
relate to the task performed by the service, the input it accepts, the output it returns, 
the resources (mainly databases) it uses, and the algorithm (or function) it 
implements. Note that not all of these five properties will be utilized for any given 
service. For example SwissProt database does not use “Function_of” property as this 
property is more specific to bioinformatics tools. 

 



108 M. Mahoui et al. 

During the design of the ontology two main features were considered:  

− Provide a scalable and easy-to maintain ontology: The objective in SIBIOS design 
is clearly not to include every possible concept that will be used to describe service 
properties ranges. Rather, the objective is to propose an ontology structure which 
can accommodate new concepts and services. Furthermore, to facilitate the task of 
updating the ontology when new services and potentially new concepts (needed for 
their properties range) are added, it is preferable to organize the ontology in such a 
way that most elements that are likely to change be localized together within the 
ontology structure.  

− Provide a hierarchical structure for concepts: A hierarchical structure can be used 
to enhance capabilities and service composition. For example, consider Blastn 
service [3] where the value assigned to “perform_task” property is pairwise 
sequence alignment. By hierarchically structuring pairwise sequence alignment as 
a subclass of sequence alignment, a user searching for services that perform 
sequence alignment will be able to retrieve Blastn as a potential service. In the 
context of service composition, this inference process is also useful to improve the 
search precision when matching two connecting services. For example, one can 
find that service Blastn for which the output is nucleotide_sequence can be 
followed in a workflow by a service s that accepts a sequence, a superclass of 
nucleotide_sequence, as input. 

The resulting ontology is depicted in figure 2. with three main categories at the top 
level: the application domain, the bioinformatics domain, and the biology domain. 
The application domain contains information that is tightly associated with specific 
services or applications such as Blastn service; an addition of the services description. 
The bioinformatics and biology domains hierarchically structure the concepts used to 
describe the range of service properties. The current implementation of SIBIOS 
ontology uses OWL language OWL [19] taking advantage of the available tools 
including ontology editors such as Protégé [20], ontology validators such as 
WonderWeb [21], and ontology reasoners such as RacerPro [22]. 

3.2   Ontology Maintenance 

SIBIOS ontology is designed as an open ontology to be able to cope with users’ 
requirements to add new services and corresponding bioinformatics and biological 
concepts as they are needed for building new workflows. Service deletion is also a 
desirable property to have as services become obsolete over time and are replaced by 
more powerful ones. 

Despite the availability of powerful editor tools such as protégé [20] to help users 
manipulate ontologies, the process of ontology update remains a complex process for 
scientists as several issues need to be considered. Consider for example the procedure 
of adding a new service using Protégé editing tool. First scientists have to define the 
new service as a subclass of service application domain. Comments for the new 
service are optional but highly recommended. In next step, service restrictions (i.e. 
implementation of service properties) need to be created. This is considered as the 
most complex part in the entire procedure. To find all the required biological and 
bioinformatics concepts describing the range of the properties or relationships, 



 SIBIOS Ontology 109 

scientists have to check through all the unstructured/flatted concepts located at 
different imported ontology files. Furthermore other restrictions need to be defined in 
order to enable the reasoning capabilities of the ontology. A procedure inverse to the 
insert procedure is required for removing an existing service.  

The Ontology Writer component, part of the knowledge base administration 
module, allows scientists to easily update/upgrade the ontology without having to be 
exposed to low level basic operations associated to each service update or delete as 
described above. 

4   Ontology Deployment in SIBIOS 

4.1   Service Selection 

With the wide array of knowledge levels among biologists and bioinformaticians, it is 
necessary to allow a flexible system for service selection. Service browsing, the most 
common exploratory method supports classification of services by properties such as 
input, output, and task [17]. This approach provides a process that is adaptable to 
users of all levels. However, in order to provide a more robust querying interface, 
additional service descriptions and querying capabilities are necessary such as those 
supported by [12].  

  
(a) Service Browsing (b) Service Discovery 

Fig. 3. Service Selection Interface 

Service selection in SIBIOS utilizes both service browsing and advanced querying. 
RACERPro [22] with its reasoning capabilities is used to retrieve information from 
the ontology. Using browsing capabilities users can browse through the existing 
services categorized using either one of the available service properties. Figure 3.a 
shows part of the services classified using “has_input” property. For each property a 
hierarchical structure is built based on the list of biological and bioinformatics terms 



110 M. Mahoui et al. 

involved in describing the property. The names of services are attached as leaf nodes 
to the constructed hierarchy. Note that a service can be located at different levels of 
the hierarchy, if it accepts more that one parameter for the given property.  

The property based classifications are built dynamically each time a user connects 
to SIBIOS server. SIBIOS also supports the requirements of more sophisticated  
users who often want to discover services by combining more than one property  
(e.g. service input and task performed). The example in figure 3b illustrates how 
SIBIOS supports the advanced query (also called service discovery). Similarly to 
service browsing, SIBIOS leverages on the reasoning capabilities of RacerPro to 
attach to each listed biological or bioinformatics concept the list of services for which 
the concept can be inferred as its domain. 

4.2   Service Composition 

Service composition is the process of connecting services into a meaningful 
workflow. SIBIOS ontology is deployed each time a service s is proposed to be 
scheduled after pervious services. Such composition is allowed only if a subset of the 
input parameters of s matches a subset of the output parameters of each targeted 
previous service. To leverage on the hierarchical structure that characterizes the 
description of bioinformatics and biological terms, we utilize reasoning capabilities of 
Racerpro [22] to support an inclusive matching rather than an exact matching between 
input/output parameters. For example if a previous service to s has sequence as output 
and one of the input parameters of service s is protein sequence then the composition 
between the services can occur. Similarly if the input of service s is sequence, then it 
should compose with a previous service that outputs protein sequence. 

 

Fig. 4. An example of workflow composition in SIBIOS 

To perform the service composition five connectors are provided that specify how 
results from previous services can be combined. These connectors are: primitive 
connector, UNION connector, INTERSECT connector, MINUS connector and 
CROSS connector. The primitive connector is used when a service s has only one 
antecedent service. The semantic of the last four connectors is compatible with the 



 SIBIOS Ontology 111 

relational algebra set operators. To generate the links between services, the researcher 
may select the services using the browsing option; and then make use of the 
connectors to establish the link between services. The other option consists of using 
the service discovery option of service selection to perform the connection at the same 
time the service is selected (Figure 3.b). As a final note it is to be seen that the 
features offered by service browsing, service connector and service discovery can be 
used in tandem to build a workflow. 

An example of workflow generated by SIBIOS is shown in figure 4, where 
Genbank [2] search service is scheduled to execute using the output generated by 
Enzyme [23] and Swissprot [7] services. The output of Genbank search service is fed 
as input to PIR search service [24]. The services were selected using service 
discovery and service browsing. The orchestration of the services to form the 
workflow was achieved using service composition of SIBIOS. 

4.3   Fault Tolerance Framework 

The workflow enactment module of SIBIOS is a complex engine with distributed 
systems collaborating with each other to achieve the goal of the scientific workflow. 
The role of the fault tolerance module is to increase the reliability of the workflow 
enactment module and therefore minimizing failures of workflow executions. A 
detailed description of the fault tolerance framework is beyond the scope of the paper. 
This section details the fault tolerance strategy that can be used when a service in the 
workflow fails and how the ontology is deployed for this purpose. There are currently 
three ways by which a service failure can be resolved in SIBIOS-the mirror service, 
equivalent replacement service and the nested/sub workflow, invoked in this default 
order to deal with service failures. The nested/sub workflow is still in research phase 
and will not be considered in this section. 

Mirror service is the first option considered to recover from a service failure. This 
option provides minimal change to the initial workflow described by the user, so as 
for the internal workflow specification (only the service URL changes). In case the 
mirror service is not an option or is itself subject to failure, a replacement service 
strategy is considered. Service replacement utilizes the properties used to describe 
services namely input, output, resources, algorithm and task performed to decide the 
replacement of a failing service. In a perfect case, a service s2 is elected as a 
placement of service s1 if and only if the range values of each of s2 properties 
“match” those of s1 properties. For example if s1 has EC_Number and 
sequence_length as input parameters, then service s2 needs to include EC_number 
and sequence_length as input parameters in order to be considered as a replacement 
service. However, in practice different bioinformatics services are unlikely to be 
identical in terms of all describing properties. Hence in order to broaden the search 
domain to find equivalent replacement services we identified four parameters, that 
when combined, provide different levels for replacing a failed service. First, for each 
property of the failed service, we consider only the parameters used for the service 
invocation (e.g. EC_number); instead of considering all parameters used to describe 
the property’s range. Second, we distinguish between an exact match for a property 
range where all parameters (e.g. EC_Number and sequence_length) used for invoking 
the failed service are also found in the replacement service; and a partial match where 



112 M. Mahoui et al. 

some of the parameters (e.g. sequence_length) may not be present in the replacement 
service. In terms of the service properties, we assign different weights to the four 
properties defining a service. For example, while the replacement service has to 
“match” the failed service in terms of the input and output parameters, this criterion is 
relaxed for properties such as the resources property. Finally, we use the subsumption 
relationship that characterizes the properties range to broaden the search for service 
replacement. For example, a service that has Identifier as input parameter will be 
considered as replacement for a failed service with EC_number as an input parameter, 
since the former is a superclass of the latter. 

In summary, equivalent replacement service procedure relies on the ontology and 
the reasoning capabilities of RacerPro to search for a replacement of a failed service. 

5   Discussion 

Most integration systems that do not adopt a warehouse approach use ontologies as 
the basis for their integration solution. Ontologies are becoming popular in the 
domain of bioinformatics used in TAMBIS [25], BACIIS [26], BIOMOBY [9] with 
sub-projects MOBY-S and Semantic-MOBY, myGrid [10], and PROTEUS [11]. 
MOBY-S and Mygrid are most relevant to SIBIOS as they were designed during the 
same period when SIBIOS ontology was designed. The description of the services in 
terms of a set of properties is the common feature shared by the ontologies. This is 
used by the service selection and service composition modules. The difference that 
distinguishes SIBIOS from myGrid and BIOMOBY projects is that SIBIOS does not 
reply on the service providers or third parties to register their services. Fault tolerance 
strategies in scientific workflow systems have just caught the attention of researches. 
Fault tolerance is addressed as future work in [12] as ‘Some computational 
environments are less reliable than others’. SIBIOS fault tolerance component uses 
the ontology and its reasoning capabilities to improve the reliability of the system 
especially when dealing with http based bioinformatics services. 

Future extensions include leveraging the features of the recent semantic Web 
language, OWL-S [27], to unify service description currently defined at the ontology 
level; and service wrappers currently implemented as an XML specification. This can 
be achieved using OWL-S as this latter allows a multi-layer description of services 
that can be deployed in various components of SIBIOS. 

Acknowledgements. This project was supported in part by NSF CAREER DBI-DBI-
0133946 and NSF DBI-0110854. 

References 

1. Abel KJ, Xu J, Yin GY, Lyons RH, Meisler MH, Weber BL. Mouse Brca1: localization 
sequence analysis and identification of evolutionarily conserved domains. Human 
Molecular Genetics. 1995 Dec 4(12): 2265-73. 

2. (Website)  Genbank-http://www.ncbi.nlm.nih.gov/Genbank 
3. (Website) Blast-http://www.ncbi.nih.gov/BLAST/ 



 SIBIOS Ontology 113 

4. (Web site) Transeq, EMBOSS tool for translating DNA/RNA into protein. http://www. 
ebi. ac.uk/emboss/transeq/ 

5. (Web site) PRINTS. http://umber.sbs.man.ac.uk/dbbrowser/PRINTS/ 
6. Scordis P, Flower DR, Attwood TK. FingerPRINTScan, “intelligent searching of the  

 PRINTS motif database”. Bioinformatics. 1999 Oct, 15(10):799-806. 
7. (Web site) SwissProt. http://us.expasy.org/sprot/ 
8. Galperin M., “The Molecular Biology Database Collection”. 2006 update. Nucleic Acids 

Research, vol. 34,  pp. D3-D5, 2006. 
9. Wilkinson M, Schoof H, Ernst R, and Hasse D, “BioMOBY Successfully Integrates 

Distributed Heterogeneous Bioinformatics Web Services”. The PlaNet Exemplar Case, 
Plant Physiol. 2005 May; 138(1):5-17. http://www.biomoby.org/ 

10. Wroe C, Stevens R, Goble C, Boberts A, Greenwood M, “A Suite of DAML+OIL 
ontologies to Describe Bioinformatics Web Services and Data”. International Journal of 
Cooperative Information Systems, Vol 12, No 2, 2003.  

11. Cannatoro M, Comito C, Schiavo FL and Veltri P, “Proteus, a Grid based Problem Solving 
Experiment for Bioinformatics: Architecture and Experiments”. IEEE Computational 
Intelligence Bulletin. Feb 2004. Vol. 3. No. 1. 

12. Ludascher B, et Al., “Scientific Workflow Management and the KEPLER System”, 
Concurrency and Computation: Practice & Experience, Special Issue on Scientific 
Workflows, to appear, 2005. 

13. Ben Miled Z, Gao N, Bukhres O, Lu L, Li N, He Y, Mahoui  M and Chen J: SIBIOS, “A 
System for the Integration of Bioinformatics Services”, Proc. of the Second International 
Workshop on Challenges of Large Applications in Distributed Environments. IEEE. 2004. 

14. (Website) Pegasys-http://bioinformatics.ubc.ca/pegasys/ 
15. Ben Miled  Z, Mahoui M, Gao N, Lu L, Chen J and He Y, “A Service Discovery 

Approach in Support of Web Service Integration”, BIBE'04, Proc. of the 5th IEEE 
Symposium on Bioinformatics and Bioengineering 2004. 

16. Stevens R, Goble CA and Bechhofer S, “Ontology-based Knowledge Representation for 
Bioinformatics”. Briefings in Bioinformatics, 1(4):398-416, November 2000. 

17. Stevens R, Goble CA, Baker PG, Brass A, “A classification of tasks in bioinformatics”. 
Bioinformatics 17:1:180-188, 2001. 

18. Mahoui M, Lu L, Gao N, Li N, Chen J, Bukhres O and Ben Miled Z, “A Dynamic 
Workflow Approach for the Integration of Bioinformatics Services”, Cluster Computing 
Journal, pp. 279-291, 2005. http://sibios.engr.iupui.edu/  

19. Jim H, Eric M: Web Ontology Language. 2004. http://www.w3.org/2004/OWL/ 
20. (Web Site) The Protégé Ontology Editor and Knowledge Acquisition System. 

http://protege. stanford.edu/ 
21. (Web Site) WonderWeb OWL Ontology: http://phoebus.cs.man.ac.uk:9999/OWL/Validator 
22. Michael W and Ralf M, “A High Performance Semantic Web Query Answering Engine”. 

http://www.franz.com/products/racer/  
23. Website: Enzyme Search Service- http://www.expasy.org/enzyme/ 
24. Website: PIR-“The Protein Information Resource (PIR)”. Nucl. Acids. Res. 2000 28: 41-44. 
25. Stevens R, Baker PG, Bechhofer S, Ng G, Jacoby A, Paton NW, Goble CA and Brass A, 

“TAMBIS: Transparent Access to Multiple Bioinformatics Information Sources”, 
Bioinformatics, 16:2 PP.184-186, 2000. 

26. Ben Miled, Z., Webster, Y., Li, N., Liu, Y., “An Ontology for the Semantic Integration of 
Life Science Web Databases,” International Journal of Cooperative Information Systems, 
Vol. 12, No. 2, June 2003. 

27. (Web Site) DAML Services – Tools, http://www.daml.org/services/owl-s/tools.html 



U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 114 – 123, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Data Structures for Genome Annotation, Alternative 
Splicing, and Validation 

Sven Mielordt1,*, Ivo Grosse1, and Jürgen Kleffe2 

1 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 
06466 Gatersleben, Germany 

2 Charité-Universitätsmedizin Berlin - Campus Benjamin Franklin 
Institut für Molekularbiologie UND Bioinformatik, 

Arnimallee 22, 14195 Berlin, Germany 
mielordt@ipk-gatersleben.de, grosse@ipk-gatersleben.de, 

juergen.kleffe@charite.de 

Abstract. To establish a clean basis for studying alternative splicing and gene 
regulation in life science projects, a powerful data modeling and also a strict 
validation procedure for assigning levels of reliability to given gene models is 
essential. One common problem of public genome databases are insufficiently 
organized and linked description data, which make it difficult to study relations 
of the alternative isoforms of a gene that are relevant for medicine and plant 
genome research. This is a severe obstacle for the integration of biological data 
and motivated us to establish a new modeling instance and that we call splice 
template or sTMP. Every sTMP has a unique splicing pattern, but the length of 
the first and the last exon remains undefined. This allows to model different 
gene isoforms with the same splicing pattern. By utilizing this more fine-
grained data structure, many cases of plurivalent mRNA-CDS relations are 
uncovered. There are more than 3,000 extra CDSs in the human genome 
compatible with the categories sTMP, mRNA and CDS, which exceed the 
classical one-to-one relations of mRNAs and CDSs. In one case, 11 extra CDSs 
are compatible with one mRNA. Crosslinks between mRNAs derived from 
different sTMPs leading to the same CDS are now accessible as well as disease-
related ruptures in UTR regions. This allows discovering and validating disease 
and tissue specific differences in alternative splicing, gene expression and 
regulation. Another problem in public databases is a too much relaxed standard 
for labeling genes “confirmed by ESTs and full-length-cDNAs.” We provide a 
pipeline that handles gene annotations from different sources, integrates them 
into complex gene models and assigns strict validation tags, constrained by a 
local low-error model for the alignments of genome annotation and transcripts. 
The data structures are being implemented and made publicly available at the 
Plant Data Warehouse of the Bioinformatics Center Gatersleben-Halle 
(http://portal.bic-gh.de/sTMP). 

Keywords: Gene and genome annotation, alternative splicing, data integration, 
splice template, validation and confirmation, quality control, Fasta-XML 
format. 

                                                           
* Corresponding author. 



 Data Structures for Genome Annotation, Alternative Splicing, and Validation 115 

1   Introduction 

Gene annotation and prediction is still a challenging task. On average less than 40% 
of the ab-initio gene predictions for Arabidopsis are error-free and hence genes with 
complete full-length cDNA support are important for testing and training gene 
prediction software [1]. Studying alternative splicing and gene regulation in animal 
and plant genome projects not only demands a strict validation procedure, but also a 
powerful meta-data modeling. Insufficiently organized and linked description data 
makes it difficult to express and uncover relations between the alternative isoforms of 
a gene. This is a severe obstacle for the integration of genome data.  

The EnsEMBL and TIGR-XML Annotation. EnsEMBL [2] and TIGR-XML [3] 
model protein-coding genes on the genomic DNA as fixed hierarchical tree structures 
as shown in Fig. 1. A gene locus may have one or more splice isoforms (mRNAs). 
Each mRNA splits into the protein coding CDS region and the two untranslated 
regions 5’UTR (upstream) and 3’UTR (downstream). This topology cannot deal with 
alternative start codons for the same mRNA or other alternative mRNAs with the 
same splicing pattern, such as mRNAs with alternative transcription start sites or 
alternative polyadenylation sites. Moreover, there are no crosslinks given between the 
different CDSs of a gene, although these would be instructive, since often 
alternatively spliced mRNAs differ only in the UTR regions but lead to the same CDS 
and therefore code for the same protein. 
 

  

Fig. 1. The EnsEMBL and TIGR-XML entities model protein-coding genes on the genomic 
DNA as fixed hierarchical tree structures 

The GenBank (RefSeq) Annotation. In contrast, NCBI [4] GenBank (RefSeq) 
annotations do not care for the relationship between mRNAs and CDSs and are 
therefore more general. However, they provide only unrelated lists of mRNAs and 
CDSs for each gene, as can be seen in Fig. 2. The users are left alone to build and run 
their own programs for matching mRNAs and CDSs in order to find the relations 
between mRNAs and CDSs. 
 



116 S. Mielordt, I. Grosse, and J. Kleffe 

 

Fig. 2. GenBank (RefSeq) annotations do not take into account the relationship between 
mRNAs and CDSs and therefore provide only unrelated mRNA and CDS lists 

The present situation motivated us to develop a better model or data structure. It 
provides a network graph instead of a tree and offers direct access to problems like 
“which mRNAs lead to the same CDS” or “which mRNAs are likely to be disease-
related due to ruptures or extensions in UTR regions” or “which Arabidopsis splice 
template belongs to a specific barley EST.” 

2   Results and Discussion 

Splice Templates: A Data Structure for Genes and mRNAs. We propose a new 
data structure for a gene locus and its mRNAs that we call splice template or sTMP, 
shown as a toy example in Fig. 3. Every sTMP has a unique splicing pattern, but the 
length of the first and the last exon remains undefined. This allows modeling different 
gene isoforms with the same splicing pattern, such as mRNAs with alternative start 
codons , alternative transcription start sites due to alternative promoters, or alternative 
polyadenylation sites. The sTMP also facilitates uncovering new or prolonged UTR 
regions for known splice variants when aligning sTMPs with cDNA transcripts. This 
is important, because UTRs are often incompletely annotated or even missing. 

If mRNAs only differ in the UTR regions, but lead to the same CDS and therefore 
code for the same protein, this can now be clearly derived from the developed data 
model. In the example presented in Fig. 3, sTMP 1 splits into two mRNAs, which 
differ only by the length of the first exon. mRNA 1 has a longer first exon than 
mRNA 2 and therefore mRNA 1 can be translated into two proteins by using two 
alternative start codons, giving a long variant CDS 1 with a shorter 5’ UTR and a 
short CDS 2 with a longer 5’ UTR. mRNA 2 only encodes the short CDS 2, because 
the first exon contains only the downstream ATG. mRNA 3 is like mRNA 2, but 
differs in the 3’UTR region. Thus, it encodes the same protein (with the same CDS 2) 
as mRNA 2. Differences in the 3’UTR region can influence the in-vivo stability of the 
mRNA, and very long 3’UTRs make the mRNA subject to “nonsense-mediated-
mRNA decay” (NMD) degradation [5]. Frequent alternative usage of 3’UTR introns 
and gene models with up to ten such introns might be due to a number of disease 
related transcripts showing cases of disrupted NMD. 

Noncoding and regulatory RNAs are important and move more and more into the 
focus of research efforts. These are small interfering RNAs (siRNAs), “misc_RNAs,” 
and many other types like snoRNA genes, some of which are polycistronic. In the 
 



 Data Structures for Genome Annotation, Alternative Splicing, and Validation 117 

developed data model, we subsume them all as “regulatory RNA” or regR.  Fig. 3 
shows two of them under mRNAs 3 and 4 in the example and they easily fit into the 
data structure. 

Additionally, we connect to orthologous and paralogous genes via similarity or 
identity links, depending on the level of similarity. Combined with an ontology 
database, this settles our gene network data structure for complex queries. The Plant 
Data Warehouse ontology database fosters the investigation of gene families and 
subnets of interest to the users. 
 

 
 

Fig. 3. Every sTMP has a unique splicing pattern, but the length of the first and the last exon 
remains undefined. The data structucture makes it possible to model different gene isoforms 
with the same splicing pattern. Crosslinks between genes refer to homologous genes. 
Noncoding and regulatory RNAs easily fit into the data structure. 

Application of Splice Templates. To estimate how many genes have plurivalent or 
missing mRNA-CDS relations, we analysed the human genome, NCBI RefSeq 35.1 
build. As shown in Table 1, there are 26796 genes, 27542 mRNAs, and 28063 CDSs 
annotated. There is no compatible mRNA for 674 CDSs; in these cases, we generate 
an extra mRNA that is identical to the CDS, leading to 28216 mRNAs overall. There 
are also 199 mRNAs without a compatible CDS. In such cases, we assign the tag 
“function unknown.” In total, 28181 sTMPs are required as upper nodes for all 
mRNAs and CDSs. 

Many cases of plurivalent mRNA-CDS relations are uncovered by the sTMP data 
structure as shown in Table 2. There are more than 3,000 extra CDSs compatible 
with the categories sTMP, mRNA, and CDS, which exceed the classical one-to-one 
relations between mRNAs and CDSs. In the most outstanding case, 11 extra CDSs 
are compatible with one mRNA. Specifically, 12 CDSs, which differ only in the 
position of the start codon, are compatible with one mRNA. Hence, these transcripts 
have the same splicing pattern, but differ in the functional assignment of UTR and 
CDS. 

 



118 S. Mielordt, I. Grosse, and J. Kleffe 

Table 1.  RefSeq genes and isoforms in the human genome 

 
 
 
 
 
 
 
 
 
 

 

RNA genes are only sparsely available in the current RefSeq annotation. For 
example, all 79 snoRNAs annotated in the human genome are on chromosome 15. 
Since from other species (e.g. Arabidopsis) a spread over all chromosomes is known, 
we speculate (oder expect) that there are many more such genes in the human 
genome, but that up to now only the team that was responsible for the annotation of 
chromosome 15 considered them worthwhile. These RNAs are involved in processing 
and modification of other RNAs, such as ribosomal and small nuclear spliceosomal 
RNAs. SnoRNAs form a large family of relatively well-characterised non-coding 
RNAs (ncRNAs) [6]. 

Table 2.  Plurivalent relations in the human genome 

 
 
 
 
 
 
 
 
 
 
 
 

2.1   Splice Templates and the Quality of Annotations 

While collecting and validating large sets of genes, we learned that gene annotations 
in the public databases are often unreliable. Gene annotation databases usually 
provide the accession numbers of supporting ESTs and full-length-cDNAs, but no 
detailed alignments. However, these would be important for the annotators of the 
public databases and help to increase the relaxed standards currently in use. For 
example, the NCBI handbook [4] suggests allowing a global error rate of up to 5% 
and requires only 50% or a coverage of 1000 bp of the gene model in order to assign 
the label “confirmed.”  

Human Genome

RefSeq revised

genes 26796 26796
sTMPs 0 28181
mRNAs 27542 28216
CDSs 28063 28063
CDSs without mRNA 674 0
mRNAs without CDS 199 199

#  of items

Human Genome

sTMPs mRNAs CDSs

extra CDSs 3115 3079 3077
extra mRNAs 117 80 3044

sTMP mRNA CDS

extra CDSs 8 8 11
extra mRNAs 3 4 11

for all

max. for one

number of items



 Data Structures for Genome Annotation, Alternative Splicing, and Validation 119 

Moreover, the currently used error models do not take into consideration local 
clusters of errors. We think that sufficiently spaced single nucleotide mismatches or 
gaps can be tolerated in larger numbers than dense blocks of errors, which might 
indicate alternative splice sites or a wrong gene annotation. Here we propose a stricter 
standard by accepting a global error rate of not more than 1% and at most two errors 
within a sliding window of length 20 bp. Such almost perfect matching is required to 
distinguish NAGNAG acceptor isoforms, which differ only by a single codon. Their 
subtle effect on mRNA and protein structure is often overlooked but may have a great 
impact on biology and disease [7]. 

Confirmed untranslated regions (UTRs) are important for improving promoter 
recognition and our understanding of gene regulation. These elements were not 
incorporated in previous training-sample oriented studies, but we include them now. 

2.2   Differences of RefSeq and EnsEMBL Annotations 

The human NCBI RefSeq GenBank annotation version 35.1 and the EnsEMBL 
version hg17 both rely on the same genomic assembly from May 2004. Surprisingly, 
the annotation of genes and mRNAs differs in many cases. Although using the same 
genomic template, many mRNAs are annotated with different spliced alignment 
patterns in both databases, leading to incompatible solutions. Another important 
annotation source is the AltSplice database from EBI [8]. It is based on the EnsEMBL 
version tiling path and can be seen as a revised and improved version for many genes. 
Therefore, we compare the RefSeq and the AltSplice annotation. 

One of the standard techniques for gene annotation is a spliced alignment of ESTs 
and cDNAs [9], [10] against the genomic template as shown in Fig. 4.  It is slow and 
often unreliable in finding short exons, long introns, the true start codon, or the 
correct strand of single exon genes. In contrast, the sTMP data structure allows a 
simple query that checks existing gene annotations by in-silico splicing and aligning 
the resulting sTMPs with full-length cDNA. It allows to quickly find all low-error 
matching mRNA-cDNA pairs for whole genomes by calculating seed triggered [11] 
branch-and-bound k-band alignments. This was done with the separately downloaded 
RefSeq transcripts as cDNA database against the sTMPs derived from the RefSeq 
genome or the AltSplice annotation. 

 
 
 
 
 

 

Fig. 4. Spliced alignment of an EST or full-length cDNA (“fl-CDNA”) shows exons and 
introns on the genomic DNA sequence 

As shown in Table 3, 6,614 conflicts exist between the RefSeq and the AltSplice 
annotation. Most of them consider only a few nucleotides at the boundaries of the first 
or the last exons, but 1,660 are severe exon count conflicts, meaning that the spliced 
alignment solution differs in the number of exons. Generally, the average quality of 



120 S. Mielordt, I. Grosse, and J. Kleffe 

the AltSplice database is higher. 1,056 AltSplice models and 3559 RefSeq models 
exceed a global error threshold of 1%. 3307 AltSplice models and 5829 RefSeq 
models exceed the local error threshold of 2 errors in a sliding window of length 20 
bp. These annotations should be furthermore scrutinized in order to correct a possibly 
wrong spliced alignment. 

Table 3.  Conflicts in the RefSeq and AltSplice human genome annotation 

 
 
 
 
 
 
 
 
 
 

It shall be emphasized that these conflicts are artefacts of different annotation tools, 
lazy alignment rules and insufficient data structures. By theory, such should never 
happen. 

2.3   Finding Novel Genes and Isoforms 

The splice templates might also be useful for uncovering novel splice isoforms. 
Often transcripts are mapped with a high local but low global error rate to known 
splice templates, which indicates minor but important deviations. Because the 
alignment and refinement procedure between a splice template and a transcript is 
very fast, we can iterate the algorithm as long as needed to find the true isoform and 
map it onto the genomic DNA. The results are new splice templates and mRNAs for 
known gene loci.  

2.4   Novel Genes and Isoforms in the Arabidopsis Genome 

Arabidopsis thaliana is the major and best-understood model organismn in the plant 
world with a relatively small genome of only 119 Mbp on 5 chromosomes. This is 
only about 3% of the human genome size. Nevertheless, due to a higher gene density 
and smaller introns, there is a comparable number of ~28000 genes. Surprisingly, our 
pipeline found as much as 2330 novel genes and isoforms in the Arabidopsis TIGR-
XML genome release 5.0  — a clear indication for the need of improved annotation 
pipelines. The data structures are being implemented at the Plant Data Warehouse 
[12] of the Bioinformatics Center Gatersleben-Halle (http://portal.bic-gh.de/sTMP). 

2.5   The Fasta-XML Format – Combining the Advantages of XML and Fasta 

The advantage of the XML format is its highly structured descriptive power. This 
makes it perfectly machine readable, and the validity of the syntax is checkable by 
means of a DTD definition file. Unfortunately, other aspects make the format 

conflicts between refSeq and AltSplice 6614
exon count conflicts between refSeq and AltSplice 1660

numberOfBadGlobalErrorRate_AltSplice 1056
numberOfBadGlobalErrorRate_refSeq   3559
numberOfBadLocalErrorRate_AltSplice 3307
numberOfBadLocalErrorRate_refSeq    5829



 Data Structures for Genome Annotation, Alternative Splicing, and Validation 121 

unfavorable for many purposes: files become inflated in size and are difficult to 
read for humans. Moreover, DOM parsers easily run out of memory when 
constructing the complete data tree for huge input files (try parsing the 100 Mbyte 
TIGR XML version 5.0 file with the Arabidopsis chromosome 1 on a 32-bit PC 
with 2 GB of memory). 

The advantage of the Fasta format is its simple structure as a flat file for one or 
multiple sequences. A single line of description after the ‘>’ symbol preceding each 
sequence gives a very compact format, which is widely used as input and output for 
many bioinformatics tools. The disadvantage is its lack of structure in the description 
line. 

Our solution is splitting the XML data into four Fasta format files for genes, 
sTMPs, mRNAs, and CDSs. Only the locally relevant part of the well-formed XML-
like description data is provided in a single line followed by the sequence itself. The 
user can easily parse the relevant part.  A toy example is presented in appendix The 
Fasta-XML Descriptor Format, and a detailed description can be found at 
http://portal.bic-gh.de/fasta-xml/.  

We provide strictly validated ready-to-use spliced gene isoforms (i) as a data 
source for alternative splicing, (ii) as large training samples for training and 
benchmarking gene prediction software, and (iii) for an efficient detection of novel 
gene isoforms. 

We also provide a converting tool, which transforms traditional XML and the 
Fasta-XML format. The data structure can also serve for updating ER models or for 
adding information to classical GenBank format  files.  

3   Conclusions 

To establish a clean basis for studying alternative splicing and gene regulation in 
life science projects, a powerful data modeling and also a strict validation procedure 
for assigning levels of reliability to given gene models is essential. We introduce a 
new  data structure that we call splice template or sTMP. Every sTMP has a unique 
splicing pattern, but the length of the first and the last exon remains undefined. This 
allows to model different gene isoforms with the same splicing pattern. Crosslinks 
between mRNAs derived from different sTMPs but leading to the same CDS 
become accessible as well as disease-related ruptures and extensions in UTR 
regions. We present a pipeline that handles gene annotations from different sources, 
integrates them into complex gene models, and assigns strict validation tags. This 
allows uncovering and validating disease and tissue specific differences in 
alternative splicing, gene expression, and regulation. The XML-Fasta format 
combines the advantages of XML and Fasta. All data are publicly available at 
http://portal.bic-gh.de/sTMP/. 
 
Acknowledgements. We thank Friedrich Möller for valuable discussions, three 
unknown reviewers for valuable comments, and the German Ministry of Education 
and Research (BMBF Grant No. 0312706A) for financial support. 



122 S. Mielordt, I. Grosse, and J. Kleffe 

References 

1. Haas,B.J., Volfovsky,N., Town,C.D., Troukhan,M., Alexandrov,N., Feldmann,K.A., 
Flavell,R.B., White,O. and Salzberg,S.L. Full-length messenger RNA sequences greatly 
improve genome annotation. Genome Biology 2002, 3(6):research0029.1–0029.12 

2. EnsEMBL/UCSC Golden Path gene annotation. URL:  http://genome.ucsc.edu/goldenPath/ 
3. TIGR (2004). The Arabidopsis thaliana genome TIGR/NCBI revision 5.0 from Frebruary 

19, 2004. URL: http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=3702 
4. NCBI (2004-2006). URL: http://www.ncbi.nlm.nih.gov/  
5. Schell,T., Kulozik,A., Hentze1,M.W. Integration of splicing, transport and translation to 

achieve mRNA quality control by the nonsense-mediated decay pathway. Genome 
Biology (2002), doi:10.1186/gb-2002-3-3-reviews1006. 

6. Scottish Crop Research Institute (2004). Computational Biology http://bioinf.scri.sari.ac. 
uk/cgi-bin/plant_snorna/introduction (snoRNAs) 

7. Hiller,M., Huse,K., Szafranski,K., Jahn,N., Hampe,J., Schreiber,S., Backofen,R., 
Platzer,M. Widespread occurrence of alternative splicing at NAGNAG acceptors 
contributes to proteome plasticity. Nature Genetics  36, 1255 - 1257 (2004) 

8. Thanaraj T. A., Stamm, S., Clark, F., Riethoven J.-J., Le Texier, V., Muilu, J. ASD: the 
Alternative Splicing Database Nucleic Acids Research, 2004, Vol. 32, Database issue 
D64-D69 (2004-2005) 

9. Usuka,J., Zhu,W., Brendel,V. (2000) Optimal spliced alignment of homologous cDNA to 
a genomic DNA template. Bioinformatics 16, 203-211. 

10. Kent, W. James. BLAT—The BLAST-Like Alignment Tool. Gen. Res. 12:656–664 
(2002) 

11. Kleffe,J., Möller,F., Wessel,R., Wittig,B. (2006). Identification of perfect matches in large 
sets of sequences, submitted. (ClustDB) 

12. Grosse,I., Funke,T., Kuenne,C., Neumann,S., Stephanik,A., Thiel,T., Weise,S. Integrative 
Datenanalyse mit dem Plant Data Warehouse Vorträge für Pflanzenzüchtung, 70:50-53, 
2006. 

Appendix: The Fasta-XML Descriptor Format 

Since some plurivalent relations imply circles and therefore convert the tree into a 
graph, an extension to standard XML is needed. This is the reason for using extra 
enumerating tags for the mRNA and CDS layer. Due to space restrictions, only a very 
simplified sketch can be presented here. For details, please visit http://portal…/fasta-
xml/. The four model layers usually give four Fasta-XML files but can also serve for 
supplementing GenBank files or for establishing ER models. 
 
1) gene layer: the core element specifies the unspliced genomic DNA, extended by 
some 5,000 bp extra sequence (specified by the o5 and o3 elements for upstream and 
downstream sequence. Multiple contig sources can be given, and differences of the 
sources may be denoted. The offset 'off' element is only needed here and for the 
sTMP (next node layer) to give the start on the genomic contig. A negative offset 
value applies for genes on the reverse strand. The following toy example stands for 
GeneID 123456 on the Homo sapiens chromosome 21: 
<gene>Hs::21::123456<o5>5000</o5>  <core>1194156</core>  <o3>5000</o3> 



 Data Structures for Genome Annotation, Alternative Splicing, and Validation 123 

<src1>NCBI::35.1<con>NT_011512.10<off>15646575</off></con><id>123456</id
><name>TPTE89</name></src1><src2>GoldenPath::17<con>chr3<off>15681575</
off></con><id>ENSG000000514241</id><diff1>126674a-,785144ac</diff1> 
</src2></gene> 
 
2) splice template layer: the core element specifies the spliced genomic DNA, 
extended by some 5,000 bp extra sequence (specified by the o5 and o3 elements for 
upstream and downstream sequence). Exon and intron lengths are also given: 
<sTMP>Hs::21::123456::1<off>0</off><o5>5000</o5><core>924<ex>347,91,178,1
16,202</ex><in>245,34778,572,99</in></core><o3>5000</o3> </sTMP> 
 
3) mRNA layer: the syntax is quite similar to the splice templates, but needs 
additional tags to handle plurivalence. There is no offset needed, because the 
sequence is the same as the splice template: 
<mRNA>Hs::21::123456::1::1<o5>5000</o5><core>924<ex>347,91,178,116,202</e
x><in>245,34778,572,99</in></core><o3>5000</o3></mRNA> 
 
4) CDS layer: exons lengths with dots mean one and the same exon for both adjacent 
parts in neighboring regions. Example: the first exon of length 91 bp in the mRNA 
has a part of 88 bp in the u5 and a part of 3 bp in the core (only the ATG start codon): 
<CDS>Hs::21::123456::1::1::2,2,2,2<o5>5000</o5><u5>435<ex>347,88.</ex><in>
245</in></u5><core>399<ex>.3,178,116,102.</ex><in>34778,572,99</in></core> 
<u3>100<ex>.100</ex></u3><o3>5000</o3></CDS> 
 
An intron with a bracketed length of 34,778 bp exactly separates u5 (5'UTR) and core 
(CDS). Here the 5'UTR is 3 bp longer and the CDS is 3 bp shorter than in CDS#2. An 
alternative start codon at the beginning of the next exon with a length of 178 bp is 
used:<CDS>Hs::21::123456::1::1::3,3,3,3<o5>5000</o5><u5>438<ex>347,91</ex>
<in>245,(34778)</in></u5><core>396<ex>178,116,102.</ex><in>(34778),572,99</
in><core><u3>100<ex>.100</ex></u3><o3>5000</o3></CDS> 



U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 124 – 135, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

BioFuice: Mapping-Based Data Integration 
in Bioinformatics 

Toralf Kirsten and Erhard Rahm 

University of Leipzig, Germany 
tkirsten@izbi.uni-leipzig.de, rahm@informatik.uni-leipzig.de 

Abstract. We introduce the BioFuice approach for integrating data from  
different private and public data sources and ontologies. BioFuice follows a 
peer-to-peer-like data integration based on bidirectional mappings. Sources and 
mappings are associated with a domain model to support a semantically mean-
ingful interoperability. BioFuice extends the generic iFuice integration platform 
which utilizes specific operators for data fusion and workflow-like script pro-
grams. BioFuice supports explorative data analysis and query and search capa-
bilities. We outline the integration approach by an illustrating scenario, the  
architecture of BioFuice and its query interface. 

1   Introduction 

Many biological and medical applications require access to a variety of molecular-
biological objects, such as genes, proteins, their interrelationships and functions, and 
their correlations with phenotypical effects. These objects are maintained in a high 
number of diverse web-accessible data sources [Ga05] as well as in local (private) 
data sources, e.g. specific analysis results such as a particular list of genes or medical 
data on patients participating in clinical trials. Typically, such data is highly diverse 
so that their integration is laborious and error-prone and difficult to perform by do-
main experts. 

Traditional data integration approaches like data warehousing and mediators are 
often applicable but also time-consuming to deploy and may lack sufficient support 
for features such as explorative data analysis. These integration approaches typically 
require a unified global schema to obtain a consistent view over data from different 
sources. However, creating such a schema for more than a few data sources is almost 
impossible due to the high diversity, complexity and fast evolution of sources. Each 
new source to consider may require adapting the global schema as well as applica-
tions built upon this schema. 

A promising alternative to the traditional data warehousing and mediator solutions 
using a global schema are so-called peer-to-peer approaches for data integration 
[Ha03]. They are based on bilateral mappings between autonomous data sources, 
called data peers, instead of mappings between data sources and a global schema. 
Adding a new data source can thus be achieved by mapping it to only one existing 
peer instead of adapting the global schema and mapping the source to it. In bioinfor-
matics, a peer-to-peer approach seems especially appropriate since bilateral mappings 
can often be derived from existing cross-references between objects of different 



 BioFuice: Mapping-Based Data Integration in Bioinformatics 125 

sources. Such cross-references refer to so-called accessions, i.e. unique object identi-
fiers, and are omnipresent in public data sources. The cross-references are typically 
maintained by domain experts and thus of high quality. However, they are currently 
used mostly for manual web navigation which is unsuitable for evaluating large sets 
of objects, e.g. for gene expression analysis. Moreover, the semantics of the cross-
references is typically not made explicit making it difficult for the user to find and 
correctly use all relevant sources and mappings for a given application task. 

iFuice (information Fusion utilizing instance correspondences and peer mappings) 
[Ra05] is a recently proposed approach for peer-to-peer data integration. It utilizes 
mappings, e.g. sets of cross-references, to combine or fuse information from different 
sources. Sources and mappings are related to a domain model to support semantically 
meaningful information fusion. The iFuice architecture incorporates a mapping me-
diator offering both interactive and script-driven, workflow-like access to the sources 
and their mappings. The script programmer can use powerful generic operators to 
execute and manipulate mappings and their results. iFuice is a generic data integration 
approach which is not targeted for a specific application domain. An initial use case 
of iFuice was to combine bibliographic data for a citation analysis of database publi-
cations [Ra05, RT05]. 

In this paper we describe how iFuice and its extension BioFuice can be used for 
data integration in bioinformatics applications. Key characteristics of BioFuice in-
clude:  

• Peer-to-peer integration: By following the iFuice paradigm BioFuice aims at 
utilizing instance-level cross-references which already exist, e.g. as web links, 
or can be generated by bioinformatics tools, such as BLAST. New sources can 
be dynamically integrated as needed by mapping the new source to (at least) 
one already integrated source. 

• Semantic integration: To address semantic integration, BioFuice utilizes a 
high-level domain model containing domain-specific object types and map-
ping types. The domain model is used to categorize specific sources and  
mappings so that they can be selected and accessed according to current appli-
cation requirements. 

• Comprehensive query capabilities: BioFuice utilizes the high-level operators 
and scripting facility of iFuice to perform data access, mapping execution and 
data fusion. This infrastructure makes it possible to react to new application 
needs and to support complex data integration and analysis workflows. Bio-
Fuice substantially extends the generic iFuice facilities by providing a graphi-
cal query interface for explorative analysis and automatically generating script 
programs from interactively specified queries. Both predefined queries as well 
as keyword searches are supported. 

• Local data sources: BioFuice integrates both public and local (private) data 
sources. In particular, query and script results or copies of entire sources may 
be stored within a local database for later reuse. BioFuice can also be operated 
in an offline mode (e.g. on a notebook) by only evaluating local data sources. 

The rest of the paper is organized as follows. In the next section we introduce the 
basic idea of the BioFuice approach by using an illustrating scenario. We also outline 
selected high-level operators and their usage. In Section 3, we introduce the BioFuice 



126 T. Kirsten and E. Rahm 

system architecture. Section 4 describes the interactive query and search capabilities 
for explorative analysis. We discuss related work in Section 5 before we conclude in 
Section 6. 

2   Illustrating Scenario 

To illustrate our data integration approach we consider an analysis task on human 
expressed sequence tag (EST) sequences. Typically, such ESTs are short DNA se-
quences of a specific organism that are generated by sequence machines. We assume 
that the analysis application needs to classify EST sequences into three classes which 
are represented by the following queries: 

Query 1 (Q1): Return all unaligned EST sequences of a given set, i.e. EST sequences 
for which no corresponding DNA sequence can be found. 

Query 2 (Q2): Return all EST sequences of a given set that are associated with pro-
tein-coding DNA sequences. 

Query 3 (Q3): Return all EST sequences of a given set that are associated with non-
coding DNA sequences. 

Such a classification is a typical data integration problem since the given set of 
EST sequences has to be combined with further molecular-biological data on genes 
and proteins to decide which sequences fall into which class.  

Figure 1a shows four (physical) sources and associated mappings we want to use 
for this scenario within a so-called source mapping model (SMM). There are three 
public data sources (Ensembl [Bi04], NetAffx [Li03], SwissProt [Bo03]) and one 
local data source, MyEstSet, specifying the EST sequences of interest. A physical 
data source (PDS), e.g. Ensembl, may offer objects of different types. We call  
the object types of one PDS the logical data sources (LDS). The notation <Ob-
jectType>@<PhysicalDataSource> is used to denote a specific LDS, e.g. Gene@En-
sembl or Protein@SwissProt. Each LDS has an identifying attribute (accession) plus 
additional attributes. 

Object types of any source are represented in the abstract domain model (Figure 1b). 
Each mapping between source instances has a mapping type which is also represented 
in the domain model. For example, mappings of type GeneCodedProteins relate gene 
instances to their associated proteins. The domain model is used to semantically cate-
gorize data sources and mappings and at a much higher conceptual level than a global 
schema. We do not include attributes for object types to accommodate a large variety 
of data sources and to make it easy to construct the domain model. In many cases, we 
expect a small set of object and mapping types to be sufficient. 

New sources can be flexibly included by adopting relevant metadata, i.e. the physi-
cal source name and its associated object type (building the new LDS) as well as 
definitions for querying and searching within the source. In addition, at least one 
mapping should be defined to connect the new LDS to an existing LDS so that the 
new LDS can be used together with others. The domain model is automatically 
adapted to the changes made within the source mapping model. 



 BioFuice: Mapping-Based Data Integration in Bioinformatics 127 

Mappings can often be represented by sets of cross-references between ob-
jects/instances of different LDS. For instance, the mapping between Gene@Ensembl 
and Protein@SwissProt can be derived from the existing SwissProt references in the 
Ensembl gene instances. Alternatively, mappings can be derived on demand by exe-
cuting queries or a program (script). In our example, the private source MyEstSet 
contains ESTs that are only described by a sequence. Hence, neither the PDS MyEst-
Set nor the public PDS Ensembl provide correspondences between the instances they 
offer. In this case, a BLAST1-like tool can be used to determine for a set of EST se-
quences the most similar DNA sequences within Ensembl. This creates a mapping 
between EstSequence@MyEstSet and SequenceRegion@Ensembl thereby integrating 
the local source into the peer-to-peer network represented by the SMM. Special map-
ping types are so-called same-mappings interrelating semantically equivalent in-
stances of the same object type. In Figure 1a there is one same-mapping on genes 
between Ensembl and NetAffx. 

Ensembl

Gene

Sequence
Region

SwissProt

Protein

MyEstSet

Est
Sequence

Extraction

Sequence
Region

Gene

Protein

SequenceExons

GeneCodedProteins

OrthologousGenes

EST
Sequence

EST DNA Alignment

Exon Exon
GeneOfExon

b) Domain modela) Source mapping model

Physical Source

Mapping

(same:          )

Legend

Object type

Mapping type

NetAffx

Gene

E
st

D
na

B
la

st
.h

sa Ensembl.
SRegionExons

Ensembl.
ExonGene

Ensembl.
GeneProteins

Ensembl.
sameGenes

 

Fig. 1. Data integration scenario 

To process data and mappings, iFuice and thus BioFuice offer a set of high-level op-
erators which can be combined within script programs. Table 1 shows a selection of 
these operators that are relevant for the examples in this paper; the full definitions are 
given in [Ra05]. The operators typically operate on a set of input objects, e.g. an entire 
LDS, and generate a set of output objects which can be used as the input of further op-
erators. In Table 1, OI denotes a set of object instances from one object type; objects are 
identified by their ids which are assumed to also identify the LDS the objects belong to. 

To solve the EST classification problem posed in the beginning of this section we 
can use the following simple script determining three sets of EST sequences:  

$alignedEstMR:=map(MyEstSet,{EstDnaBlast.hsa}); 
$unalignedEstOI:=diff(MyEstSet,domain($alinedEstMR)); 
$codingEstMR:=compose($alignedEstMR, 
                  map(range($alignedEstMR),{Ensembl.SRegionExons})); 
$proteinCodingEstOI:=(domain($codingEstMR)); 
$nonCodingEstOI:= diff (domain($alignedEstMR), $proteinCodingEstOI); 

                                                           
1 BLAST stands for Basic Local Alignment Search Tool [Al90]. 



128 T. Kirsten and E. Rahm 

Table 1. Selected iFuice script operators (OI = set of object instances) 

Operator Description 
OI:=queryInstances(LDS, query condition) executes a query on the specified LDS and returns 

object instances (OI) meeting the query condition 
OI:=searchInstances(LDS, {keywords}) executes a keyword search on the specified LDS 

and returns object instances containing at least one 
of the specified keywords 

OI:=getInstances(OI) returns complete instances for objects identified by 
their id values 

OI:=traverse(OI,{mapping names}) traverse specified mappings on input instances; 
multiple mappings are automatically composed 

OI:=traverseSame(OI,PDS) traverse same mappings to target PDS 
MR:=map(OI,{mapping names}) returns a mapping result MR (mapping table) that 

associates each input object to the corresponding 
output objects by executing specified mappings 

OI:=domain(MR) returns the domain (input objects) of a MR 
OI:=range(MR) returns the range (output objects) of a MR 
MR:=compose(MR,MR) composes two given mapping results 
OI:=diff(OI,OI) returns the difference set of object instances be-

tween the first and second input set 
AO:=aggregateSame(OI,PDS) fuses objects of two different PDS interrelated by a 

same mapping  

In the first step, we associate each EST sequence of the local source MyEstSet to 
the associated DNA sequence regions in Ensembl by executing the map operator on 
mapping EstDnaBlast.hsa. This mapping was created by performing a BLAST search 
during the integration of MyEstSet. The map result is stored in variable alignedEstMR 
indicating the EST sequences which could be mapped. The set of unaligned ESTs is 
computed by taking the difference between all given ESTs in MyEstSet and the 
aligned ESTs in (the domain of) alignedEstMR as shown in Step 2 (answer to query 
Q1). To further distinguish between protein-coding and non-coding aligned EST se-
quences, we consider that genes typically consist of multiple intron and exon  
sequences. Usually, intron sequences are spliced out before the protein coding (trans-
lation) process starts. Therefore, sequence regions within introns are typically non-
coding sequences. Conversely, exon sequences are highly involved in the protein 
coding process. In Step 3 we apply the mapping Ensembl.SRegionExons to determine 
the exons associated with the aligned DNA sequence regions. The domain of this 
composed mapping thus corresponds to the protein-coding aligned EST sequences 
(Step 4; answer to Q2). The set of non-coding and aligned EST sequences can be 
derived as the difference set between all aligned ESTs and all protein-coding and 
aligned EST sequences (Step 5; answer to Q3). 

The example illustrates the power of the set-oriented operators for interconnecting 
data from different sources. The operators make it also easy to react to new analysis 
needs. For instance, we can associate the found protein-coding EST sequences not 
only to SwissProt proteins but also to genes of Ensembl and NetAffx, e.g. for mi-
croarray-based gene expression analysis. This is achieved by the following script 
extension. 



 BioFuice: Mapping-Based Data Integration in Bioinformatics 129 

$codingEstProteinMR:=compose($codingEstMR, map(range($codingEstMR), 
{Ensembl.ExonGene,Ensembl.GeneProteins})); 

$codingEstGeneOI:=traverse(range($codingEstMR),{Ensembl.ExonGene}); 
$fusedGeneAO:=aggregateSame($codingEstGeneOI,NetAffx); 

The first statement returns a mapping result associating each protein-coding EST to 
the corresponding protein in SwissProt, the second statement determines all associ-
ated genes available in the Ensembl data source. This set of genes can further be fused 
with information on genes of the NetAffx source by traversing the corresponding 
same mapping. The fused gene information contains the attributes of both LDS, 
Gene@Ensembl and Gene@NetAffx. 

3   BioFuice Architecture 

Figure 2 gives an overview of the BioFuice system architecture. It consists of two 
main components, the iFuice core and the BioFuice query component. BioFuice util-
izes the generic iFuice core to execute script programs and fuse data from several 
sources. The BioFuice query component provides interactive query functionality, 
supports local storage of analysis results and meets specific bioinformatics require-
ments, e.g. to export genomic sequences in specific formats for later use in other 
analysis tools.  BioFuice query and iFuice core may run on the same machine or dif-
ferent machines. The BioFuice query component can also be run in stand-alone mode 
independent of iFuice, e.g. offline on a laptop. In this case analysis and query process-
ing are restricted to local data sources. BioFuice is already in use for different applica-
tions, in particular for gene expression analysis, protein interaction analysis and 
analysis of non-coding RNAs. 

 

B
 i 

o 
F

 u
 i 

c 
e iFuice script

BioFuice Interface Script 
Editor

Keyword
Search

Model-based
Querying

script result

Query Manager
Query Translation
and Execution
Unit

query specification query result

iFuice core Web Service Wrapper

metadata

request response

Snapshot
Data

MetadataSchema Handler

Data Handler

Predefined 
Queries

Snapshot Management

Generic Mapping
Execution Services

Relational
Database

XML
Database

XML
File

XML
Stream

Appli-
cationi F

 u
 i 

c 
e 

  C
 o

 r
 e

Web-
Service

W e b   S e r v i c e   A P I

Fusion Control Unit
and Repository

Mediator Interface

Mapping Handler
Repository Cache

responserequest

mapping callmapping call mapping result

Duplicate Detection

iFuice Wrapper

i F u i c e   c o r e   A P I

B
 i 

o 
F

 u
 i 

c 
e 

  
Q

 u
 e

 r
 y Object and

Sequence Exporter

Mapping Layer Mappings retrieving data of a single LDS but also interconnecting different LDS

 

Fig. 2. BioFuice system architecture 



130 T. Kirsten and E. Rahm 

The iFuice core consists of mapping execution services, a fusion control unit, a re-
pository and the mediator interface. The mediator interface supports access to the 
iFuice functionality by a basic application interface but also by specific web service 
methods (so that iFuice core may run on a separate server machine). Typically, the 
interface is used to start a script combining multiple data and mapping operations. 
The mapping handler executes the script, temporarily caches the results and provides 
the results to the application via the mediator interface. The iFuice repository contains 
all metadata of the source mapping model and the domain model. In particular, it 
stores all LDS descriptions and mapping definitions. Each mapping definition is asso-
ciated with mapping execution services that implement the specified mapping, e.g. a 
web service, Java application or SQL query. The spectrum of available mapping exe-
cution services supports mappings for sources of different formats, such as relational 
databases, XML-based sources but also application tools. The implementation of 
mappings by bioinformatics tools allows complex analysis and integration workflows, 
e.g. to perform search (blast) and data cleaning tasks. 

Like the iFuice core the BioFuice query component is modularly structured. Sub-
components include a user interface, a query translation and execution unit and a local 
snapshot management unit. The user interface not only supports query specification 
but also visualization and export of query results. Query capabilities include prede-
fined structured queries and unstructured keyword search, and are further described in 
the next section. The query manager translates interactively specified queries into an 
internal query format and automatically generates an iFuice script whenever the user 
decides to utilize the original (non-local) sources. Alternatively, queries may be re-
stricted to local data, in particular materialized analysis results and copies (snapshots) 
of public sources. In this case, the query manager maps user queries to the corre-
sponding statements on local sources, e.g. SQL statements for snapshots stored within 
a relational database. 

4   Interactive Query Processing 

BioFuice provides different query and search capabilities for explorative analysis and 
repeated execution of predefined analysis workflows. In addition to the iFuice script-
ing facility BioFuice supports canned queries, model-based querying, and a keyword 
search. Canned queries are parameterized predefined queries. Query parameters are 
provided by the user at runtime to specify specific query conditions. 

Since predefined queries are sometimes too static on the one hand and the scripting 
capability could be too complex for end users on the other hand, BioFuice provides 
the model-based querying and keyword search. Model-based querying directly util-
izes the source mapping and the domain models. Figure 3a shows the GUI for this 
query capability. Both models are illustrated as graphs on the GUI's left hand side 
(top: domain model, bottom: source mapping model). The nodes represent object 
types (logical sources) and edges stand for mapping types (mappings) within the do-
main model (source mapping model). 

Users can use the GUI to select relevant sources and specify query conditions 
(keywords) for specific LDS on the right hand side of the interface. Furthermore, the 
query targets are specified, i.e. LDS for which object instances are finally retrieved. 



 BioFuice: Mapping-Based Data Integration in Bioinformatics 131 

Objects of target LDS sharing the same object type can be aggregated, i.e. attribute 
sets of corresponding instances from these LDS are merged. BioFuice automatically 
determines available mapping paths from the source mapping model connecting the 
selected LDS and query targets; the paths are visualized on the right hand side for 
user selection. Before the query is executed the user can also specify whether the 
original sources or the local snapshots should be used to answer the specified query. 

a) Model-based query formulation

b) Keyword search

Graph-based model 
representation

Keyword search
specification

Search result sepa-
rated in overview
and details

utilize original sources 
or local snapshots

Aggreagted Query 
result separated in 
overview and details

Query specification
by selecting query 
targets, conditions
and available paths

 

Fig. 3. Selected BioFuice query capabilities 

Figure 3a illustrates such a query specification for a simple explorative analysis 
task. The goal is to find all genes of the source NetAffx corresponding to Chemokine 
proteins, i.e. special proteins that are responsible for cell-cell interactions. Based on 
the SMM of Figure 1, the plan is to use SwissProt to determine the relevant proteins 
and to traverse to the associated genes in Ensembl and then to the corresponding 
genes in NetAffx. BioFuice translates the interactively specified query into the fol-
lowing iFuice script: 

$Proteins:=searchInstances(Protein@SwissProt,"CXCL CCL XCL CX3C"); 
$Genes:=traverse($Proteins,{Ensembl.ProtGenes}); 
$FusedGenes:=aggregateSame($Genes,NetAffx); 



132 T. Kirsten and E. Rahm 

In Step 1, we utilize the LDS Protein@SwissProt to search for Chemokine proteins. 
[Ta05] provides a list of such proteins that are systematically classified in four groups 
CXC, CC, XC, and CX3C2. These group names can be used to search for relevant 
proteins since they are part of the protein name. In Step 2, the found proteins are as-
sociated with Ensembl genes which are fused with NetAffx genes in Step 3 as result. 

In contrast to the model-based query capability, the keyword search looks either 
for objects of one selected LDS or of all LDS with the same chosen object type by 
considering the specified keywords. Figure 3b shows an example for keyword search 
within the GUI where the user is interested in finding relevant Hox genes of the En-
sembl data source. This query specification is then taken by the query manager and 
either translated into an iFuice script program or a snapshot query in dependence of 
the user choice. In the first case, the query manager generates the following iFuice 
script which returns all object instances of the LDS containing the specified keyword. 

$HoxGenes:=searchInstances(Gene@Ensembl,"Hox"); 

5   Related Work 

Previous data integration approaches in bioinformatics [HK04, LC03, Iv05] have 
already made heavy use of cross-references between data sources and navigational 
access. In the simplest case, users have to manually navigate between sources and 
objects by following hypertext links, e.g. supported by a portal. Widely used systems 
like Entrez [Sc96] and SRS [Et03] support automatic navigational access in combina-
tion with web-based search and retrieval but are limited to sources at NCBI (Entrez) 
or local copies (SRS). BioFuice similarly utilizes cross-references to interrelate ob-
jects of different sources, but offers more query flexibility through its use of high-
level operators. In particular, BioFuice utilizes operators fusing objects from different 
sources which is currently not possible with Entrez and SRS. Furthermore, BioFuice 
provides a semantic domain model for both sources and mappings helping to identify 
relevant sources and focusing the analysis on semantically meaningful mappings. Our 
previous integration approaches of [DR04] (GenMapper) and [KDKR05] also utilize 
existing cross-references but do not consider the semantics of objects and mappings. 
Moreover, they use a central database to store all cross-references. Like SRS, BIS 
[La03], and others, BioFuice is not limited to pre-existing cross-references but can 
also compute mappings, e.g. by queries or bioinformatics tools such as BLAST. 

Many data warehouse and mediator systems utilize a global schema aiming at a 
consistent view over different data sources. As discussed in the introduction, such a 
schema is hard to create and maintain due to the large number of relevant sources and 
their high degree of heterogeneity. Some approaches such as ALADIN [LN05], 
HumMer [Bi05], AutoMed Toolkit [Ma05], and ANNODA [PC05] try to address this 
problem by using automatic schema matching. Other approaches simply take the 
union of the local schemas as the global schema. This exposes the heterogeneity and 
complexity to the user but still suffers from the need to change the global schema  
(and thus dependent mappings and applications) whenever one of the sources changes 
or a new source is added. In contrast to these approaches, BioFuice avoids the  

                                                           
2 The additional character 'L' within the script identifies ligand proteins. 



 BioFuice: Mapping-Based Data Integration in Bioinformatics 133 

construction of a global schema but uses bidirectional peer mappings between 
sources. The domain model used is at a much higher abstraction level than a global 
schema and does not include details like the exact set of source attributes. 

The BioFuice domain model can be seen as a domain-specific ontology. Ontolo-
gies provide a common understanding of a domain and thus are of interest for data 
integration. An overview of ontology-based approaches for data integration is pre-
sented in [Wa01]. While BioFuice currently utilizes user-defined object types as  
concepts and mapping types as their semantic relationships, other approaches reuse 
pre-defined ontologies [Me00] and focus on efficient query processing and rewriting 
by applying description logic [St03], different kinds of rules [NF05] and a quality 
model [He05]. Moreover, associating each relevant source attribute to an ontology 
concept need much more fine-grained ontologies than we use in BioFuice. Creating 
and maintaining fine-grained ontologies has similar problems than a global schema. 

Peer-to-peer data management systems typically avoid the construction of a global 
schema. Database-oriented systems like Piazza [Ha03], PeerDB [Ng03] and Orchestra 
[Iv05] allow queries to be formulated on one peer and to be propagated through the 
system. Conversely, BioFuice can execute queries as well as mappings containing 
instance correspondences between sources, and can aggregate data from different 
sources. In contrast to Orchestra, BioFuice does not need to copy remote sources to 
local copies but uses the source schemas and their instances as provided. 

6   Conclusions 

We presented the BioFuice approach to integrate data from decentralized private and 
public data sources and ontologies. BioFuice follows a peer-to-peer-like data integra-
tion based on bidirectional mappings. Sources and mappings are associated with a 
domain model to support a semantically meaningful interoperability. BioFuice ex-
tends the generic iFuice integration platform which utilizes specific operators for data 
fusion and workflow-like script programs. BioFuice supports explorative data analy-
sis and interactive query and search capabilities. BioFuice is operational and being 
used in different applications, such as for gene expression analysis, protein interac-
tions analysis, and detection and analysis of non-coding RNAs. 

Acknowledgements 

The authors thank Andreas Thor, Nick Golovin and David Aumüller for useful dis-
cussions and their collaboration in developing the iFuice core component. We also 
thank the unknown reviewers for their constructive hints to improve the paper. The 
work is supported by the German Research Foundation, grant BIZ 1/3-1. 

References 

[Al90] Altschul, S. F. et al.: Basic Local Alignment Search Tool. Journal of Molecular 
Biology 215(3):403-10, 1990. 

[Bi04] Birney, E. et al.: An Overview of Ensembl. Genome Research 14: 925-928, 2004. 



134 T. Kirsten and E. Rahm 

[Bi05] Bilke, A. et al: Automatic Data Fusion with HumMer. Proc. 31st VLDB Conf., 
Demo description, 2005. 

[Bo03] Boeckmann, B. et al.: The SWISS-PROT protein knowledgebase and its supple-
ment TrEMBL in 2003. Nucleic Acids Research 31: 365-370, 2003. 

[Et03] Etzold, T. et al.: SRS: An Integration Platform for Databanks and Analysis Tools 
in Bioinformatics. In [LC03]: 109-145. 

[DR04] Do, H.-H.; Rahm, E.: Flexible Integration of Molecular-biological Annotation 
Data: The GenMapper Approach. Proc. EDBT Conf., 2004. 

[Ga05] Galperin, M. Y.: The Molecular Biology Database Collection: 2005 Update”, 
Nucleic Acids Research, 33, D5-D24, 2005. 

[Ha03] Halevy, A. et al.: Piazza: data management infrastructure for semantic web appli-
cations. Proc. WWW, 2003. 

[He05] Heese, R. et al: Self-extending Peer Data Management. Proc. Database Systems in 
Business, Technology and Web (BTW), 2005. 

[HK04] Hernandez, T.; Kambhampati, S.: Integration of Biological Sources: Current 
Systems and Challenges Ahead. SIGMOD Record 33(3), 2004. 

[Iv05] Ives, Z. et al.: Orchestra: Rapid, Collaborative Sharing of Dynamic Data. Proc. of 
Conf. on Innovative Data Systems Research (CIDR), 2005. 

[KDKR05] Kirsten, T.; Do, H.-H.; Körner, C.; Rahm, E.: Hybrid Integration of molecular-
biological Annotation Data. Proc. 2nd Int. Workshop on Data Integration in the 
Life Sciences (DILS), 2005. 

[La03] Lacroix, Z. et al.: The Biological Integration System. Proc. 5th ACM Int. Work-
shop on Web Information and Data Management, 2003. 

[LC03] Lacroix, Z.; Critchlow T. (Eds.): Bioinformatics: Managing Scientific Data. Mor-
gan Kaufmann, 2003. 

[Li03] Liu, G. et al.: NetAffx: Affymetrix probesets and annotations. Nucleic Acids 
Research, 31(1): 82-86, 2003. 

[LN05] Leser, U.; Naumann, F.: (Almost) Hands-Off Information Integration for the Life 
Sciences. Proc. 2nd Conf. on Innovative Data Systems Research (CIDR), 2005. 

[Ma05] Maibaum, M. et al.: Cluster based Integration of heterogeneous biological Data-
bases using the AutoMed Toolkit. Proc. 2nd Int. Workshop on Data Integration in 
the Life Sciences (DILS), 2005. 

[Me00] Mena, E. et al.: Observer: An Approach fro Query processing in Global Informa-
tion Systems based on Interoperation across pre-existing Ontologies. Distributed 
and Parallel Databases 8(2): 223-271, 2000. 

[NF05] Necib, C. B.; Freytag, J.-C.: Query Processing Using Ontologies. Proc. 17th Conf. 
on Advanced Information Systems Engineering (CAISE), 2005. 

[Ng03] Ng, W. S. et al.: PeerDB A P2P-based System for Distributed Data Sharing. Proc. 
19th Int. Conf. on Data Engineering, 2003. 

[PC05] Prompramote, S.; Chen, Y.P.: Annonda: Tool for integrating molecular-biological 
Annotation Data. Proc. 21st Int. Conf. on Data Engineering (ICDE), 2005. 

[Ra05] Rahm, E. et al.: iFuice - Information Fusion utilizing Instance Correspondences 
and Peer Mappings. Proc. 8th Int. Workshop on the Web & Databases (WebDB), 
2005. 

[RT05] Rahm, E.; Thor, A.: Citation analysis of database publications. SIGMOD Record 
34(4), 2005. 

[Sc96] Schuler, G. D. et al.: Entrez: Molecular biology database and retrieval system. 
Journal of Methods in Enzymology 266:141-62, 1996. 



 BioFuice: Mapping-Based Data Integration in Bioinformatics 135 

[St03] Stevens, R. et al.: Complex Query Formulation over diverse Information Sources 
in TAMBIS. In [LC03], 190-224, 2003. 

[Ta05] Tanaka, Toshiyuki et al.: Chemokines in tumor progression and metastasis. Can-
cer Science 96(6): 317-322, 2005. 

[Wa01] Wache, H. et al.: Ontology-based Integration of Information - A Survey of exist-
ing Approaches. Proc. Workshop on Ontologies and Information Sharing (IJCAI), 
2001. 



A Method for Similarity-Based Grouping
of Biological Data

Vaida Jakonienė, David Rundqvist, and Patrick Lambrix

Department of Computer and Information Science
Linköpings universitet, SE-581 83 Linköping, Sweden

Abstract. Similarity-based grouping of data entries in one or more data
sources is a task underlying many different data management tasks, such
as, structuring search results, removal of redundancy in databases and
data integration. Similarity-based grouping of data entries is not a trivial
task in the context of life science data sources as the stored data is com-
plex, highly correlated and represented at different levels of granularity.
The contribution of this paper is two-fold. 1) We propose a method for
similarity-based grouping and 2) we show results from test cases. As the
main steps the method contains specification of grouping rules, pairwise
grouping between entries, actual grouping of similar entries, and evalua-
tion and analysis of the results. Often, different strategies can be used in
the different steps. The method enables exploration of the influence of
the choices and supports evaluation of the results with respect to given
classifications. The grouping method is illustrated by test cases based on
different strategies and classifications. The results show the complexity
of the similarity-based grouping tasks and give deeper insights in the
selected grouping tasks, the analyzed data source, and the influence of
different strategies on the results.

1 Introduction

During the last decade an enormous amount of biological data has been generated
and techniques and tools to analyze this data have been developed. Many of
these tools use data clustering and classification techniques. For instance, these
techniques are used to find similar sequences for predicting the functionality of
new sequences [GH04], to find correlated genes based on microarray data [SS02],
or to classify publications according to an ontology to locate relevant documents
faster [DS05]. A basic task underlying these approaches is the computation of a
similarity value between objects. Different techniques are developed to compute
a similarity value between objects based on the object types. For instance, edit
distance [Lev66] and n-gram [PPF95] are well-established techniques to define
similarity between strings, while BLAST [AGMML90] can be used to define a
similarity measure between DNA or protein sequences. Recently, a number of
projects discussed methods to compute semantic similarity over terms in a Gene
Ontology (GO) ontology (e.g. [CSC05] and [SFSZ05]). The similarity between
GO terms can be used to compute a similarity between data entries that are
annotated with these GO terms [LSBG03].

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 136–151, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Method for Similarity-Based Grouping of Biological Data 137

Data entries in biological data sources are often complex and store different
types of information. Although most of the research has focused on organizing
the data based on aspects, such as sequence similarity and function, we need to
analyze data using different aspects and from different points of view to obtain
deeper insights in the characteristics of the data and to discover new knowledge.
This means that we need to be able to organize the data based on different
attributes or different combinations of attributes. [KLKTB04] illustrates how a
combination of attributes could be used to find data entries describing the same
protein. In this case, search on sequence similarity is complemented with the
analysis of sequence length, organism and the data source where the sequence
was originally submitted. In this paper we use the term grouping to refer to the
task of organizing the data according to a certain aspect or a combination of
aspects. Further, we concentrate on the task of similarity-based grouping. During
similarity-based grouping the analyzed data entries are compared with respect
to a selected subset of attributes, and similarity functions that are relevant to
the attributes are used to compute the similarity of the stored values.

Grouping of data entries in one or more data sources is an operation underly-
ing many different data management tasks. Grouping can be used to structure
and visualize search results in a convenient way for the user. This is especially
important when large data sources are studied. The possibility to get an overview
over the data may lead to the discovery of new knowledge or may allow biol-
ogists to locate the information of interest faster. The identification of similar
data entries and their grouping are core operations when performing data clean-
ing activities [HGPWW04]. The identified groups of similar data entries can be
further analyzed and merged into a single data entry. In the context of data inte-
gration, techniques underlying grouping are important to correlate data entries
at different data sources. The grouping task can be narrowed to the duplicate
detection task, where it is required that matched data entries represent the
same real-world object. Duplicate detection can be both used for data cleaning
[KLKTB04] and for data integration [BBBDN05].

A number of aspects influence the quality of the grouping results: the quality
of the data sources, the selection of the grouping attributes and the algorithms
implementing the grouping procedure. In some cases, given a grouping task, it
can be difficult to decide on which attributes to perform grouping. Also, different
sets of attributes may seem relevant to the grouping task, but lead to varying
quality of the results [KLKTB04]. Further, suitable algorithms need to be se-
lected to compute the similarity between data entries and to organize similar
data entries into groups. Many methods exist, but it is often not clear which
methods perform best for which grouping tasks. The study of the properties,
and the evaluation and the comparison of the different aspects that influence
the quality of the grouping results, would give us valuable insight into the best
way to use the grouping procedures. It would also lead to recommendations on
how to improve the current procedures and develop new procedures. To be able
to perform such studies and evaluations we need environments that allow us to
compare and evaluate different grouping procedures.



138 V. Jakonienė, D. Rundqvist, and P. Lambrix

In this paper, as a first step towards the development of an environment
to support grouping tasks, we propose a method that covers the main steps
and components that should be included in such environments (section 2). The
grouping method is illustrated by test cases based on different strategies and
classifications (section 3). In subsections 3.1-3.5 we describe the grouping task,
the test cases, the implementation approaches and the evaluation approach ac-
cording to the method. In subsection 3.6 we analyze the evaluation and grouping
results and show how we obtain deeper knowledge about the grouping tasks, the
analyzed data source, and the influence of different strategies on the results. The
paper concludes in section 4.

2 Method for Grouping Biological Data

In this section we describe a method that supports similarity-based grouping of
biological data and that enables the development of grouping procedures. The
components and the main steps of the method are illustrated in figure 1.

The method uses as input the data source on which the grouping is performed.
Further, it uses similarity functions that can compute similarity values between
data values, and grouping attributes on which we base the computation of the
similarity of data entries in the data source. There may also be external sources
to support the grouping task. Based on this input the method can generate
groupings of data. In addition to this, the method also allows the evaluation
and analysis of the grouping results. For this purpose we use a library of known

Specification of
grouping rules

Pairwise
grouping

Grouping

Evaluation

Domain
independent
sim. funct.

Domain
dependent
sim. funct.

Grouping
attributes

Data
source

Other
knowledge

Library of
classifications

Analysis

Library of
similarity funct.

Fig. 1. Method for similarity-based grouping



A Method for Similarity-Based Grouping of Biological Data 139

classifications. The library stores selected sets of data entries organized into
classes1. The method then returns the generated groups of data entries as well
as reports from the evaluation and analysis.

The main steps in the method are: 1) specification of grouping rules that
define how to identify similar data entries; 2) pairwise grouping by computing
the similarity between pairs of data entries; 3) grouping similar data entries into
groups; 4) evaluation of the quality of the generated groups with respect to given
classes and 5) analysis of the grouping and evaluation results. We note that the
library of similarity functions and the specification of grouping rules are often
domain dependent, while the other steps are based on general techniques and
approaches. Further, before the grouping procedure can be applied to a data
source, the data source usually needs to go through a number of data trans-
formation steps, such as merging of data and data translation from one format
to another. In the remainder of this section we briefly describe the different
components and steps of our method.

Library of Similarity Functions. This component represents a collection of
functions that compute similarity scores between data values:

SimFunc(v1, v2) → [0, 1]. We distinguish between domain independent and do-
main dependent similarity functions. The former group of similarity functions
can be applied to any kind of data values, for instance, string-based functions. In
the latter case, similarity functions can only be used to compare values of specific
types of data values, for instance, protein sequences. The designer of similarity
functions should be aware of and develop approaches for dealing with collection
type values and missing values, which are often encountered in biological data.

Specification of Grouping Rules. In our method grouping rules are used
to express conditions on which two data entries are compared for similarity.
During this step the user defines a grouping rule or selects an already available
grouping rule that is deemed to be relevant to the current grouping task. A
grouping rule may combine different similarity functions applied to one or more
grouping attributes. For instance, a grouping rule may specify that two data
entries are similar if the sum of weighted similarity functions applied to certain
grouping attributes is higher than a given threshold. In general, the specification
of grouping rules is not a trivial task. We may need to do much experimentation
and fine-tuning to specify rules that are adequate for a certain grouping task.
Our method aims to support this.

Pairwise Grouping. Given a data source and grouping rules, the pairwise
grouping step performs pairwise comparisons of data entries. Auxiliary domain
knowledge may be used. The result of this step is the identification of the pairs
of data entries that are similar. The pairwise grouping includes the following
steps: a) selection of pairs of data entries in the data source for the comparison;
b) comparison of data values of the selected grouping attributes by applying the

1 In the rest of the paper we use classes to refer to given classifications and groups to
refer to the results of grouping techniques.



140 V. Jakonienė, D. Rundqvist, and P. Lambrix

defined similarity functions; and c) comparison of the selected data entries on
the basis of given grouping rules. While for small data sources all pairs of data
entries can be analyzed, for large data sources pruning techniques may be used
to decrease the number of performed comparisons.

Grouping. The step takes as input pairs of similar data entries and organizes
the data entries into a set of groups composed of similar data entries. Different
techniques can be used to perform grouping and they may vary on a number of
aspects. For instance, the groups can be allowed to overlap or may be required
to be disjoint. Some approaches may require the transitivity property between
similar data entries or they may allow to ignore some similarity relationships, e.g.
in order to split a group into smaller groups. Also, there may be a restriction on
the total number of groups or on the number of allowed data entries in a group.
The generated groups can be seen as the final result of the grouping method or
they can be used an input to the evaluation step.

Evaluation. During the evaluation step different measures are computed to
evaluate the quality of the grouping results. Two groups of quality measures are
distinguished [SKK00]: internal and external quality measures. Internal quality
measures compare different groupings only based on information obtained dur-
ing the grouping (e.g. pairwise similarity between data entries). External quality
measures evaluate the grouping results with respect to known classes. As em-
phasized in [SKK00], to select the best grouping approach for the analyzed task,
the approaches have to be compared with respect to a number of measures. In
our method, the library of classifications is used to compute external quality
measures.

Analysis. During this step the grouping and evaluation results are analyzed.
Different forms and reports are generated providing support for exploring the
results from different points of view. For instance, valuable insight could be
gained by analyzing and studying the entries belonging to a single group, the
correlation between groups and classes, and the influence of external knowledge
on the results.

3 Test Cases

In this section we illustrate our method for similarity-based grouping of biological
data. Further, we show how the method can be used to gain deeper knowledge
about a particular setting, i.e. about the data source, the different steps in the
method, and the influence of the various choices on the results. In our test cases
we worked on two grouping tasks: grouping of proteins with respect to their
biological function and with respect to what classes of isozymes they belong
to. Proteins are isozymes (or isoenzymes) if they are enzymes that catalyze
the same chemical reaction, but they may differ in their amino acid sequences
[BTS02]. Isozymes differ in their kinetic properties, the way they are regulated by
other proteins and quantities in which they are expressed in different tissues. For
example, the enzyme Lactate dehydrogenase is built by two isozymic polypeptide



A Method for Similarity-Based Grouping of Biological Data 141

chains: H and M. The H isozyme functions optimally in aerobic environments
and is expressed highly in the heart, while the M isozyme works under anaerobic
conditions and is expressed highly in skeletal muscle. For each grouping task we
explore the impact of different grouping attributes and grouping rules, which use
different types of similarity functions. Also, we study the influence of different
grouping algorithms. We describe the setting of the experiments and discuss the
grouping and evaluation results.

3.1 Data and Knowledge

Data Source. The data source contains 190 human proteins involved in glycoly-
sis that we retrieved on the 6th of October 2005 from the Entrez retrieval system.
The data entries have different origin. They either come from the data sources
RefSeq, SWISS-PROT, PRF, PIR and PDB, or are translated from nucleotide
sequences at GenBank, EMBL and DDBJ.

Grouping Attributes. The following types of data were selected as relevant
to the given grouping tasks:

– Definition is an attribute that describes a protein. It combines information
on protein name, synonymous names, isozyme indicator and organism name,
for instance, “ATPase, H+ transporting, lysosomal 31kD, V1 subunit
E isoform 1 [Homo sapiens].”.

– Product is an attribute that holds the name of the gene product and, in
some cases, stores the isozyme indicator in a less complex way compared to
Definition, for instance, “liver phosphofructokinase isoform a”.

– Sequence2 is the attribute where the amino acid sequence of a protein is
stored, for instance,

1 malsdadvqk qikhmmafie qeanekaeei dakaeeefni ekgrlvqtqr lkimeyyekk
61 ekqieqqkki qmsnlmnqar lkvlrarddl itdllneakq rlskvvkdtt ryqvlldglv
121 ...

– GO3 annotations. Some of the data entries are annotated by one or more
GO terms, which are denoted by their GO id:s, for instance, “go:0005524
| go:0004396”. Several attributes in a document may contain GO terms.
For our experiments we found GO terms in the attribute DBSource for
SWISS-PROT data entries and in the “note” property in the “CDS” field
under the Features attribute for the other data entries.

Other Knowledge. Of the 190 data entries, only 71 data entries were originally
annotated by GO terms, which we refer to by GOann. To increase the number of
2 In the original file this attribute is called Origin, but for the sake of readability we

use term Sequence.
3 The GO ontologies are de facto standard ontologies that describe the roles of genes

and proteins in different organisms [GO00]. The three independent publicly available
ontologies are: biological process, molecular function and cellular component. Today,
many different bio-data sources are annotated with GO terms. The terms in GO are
arranged as nodes in a directed acyclic graph, where multiple inheritance is allowed.



142 V. Jakonienė, D. Rundqvist, and P. Lambrix

data entries with GO terms we used mappings between data values and ontolog-
ical terms found on the web pages of the GO Consortium. In the experiments,
we used the mapping spkw2go to translate values of the Keywords attribute
into GO terms, which we refer to by GOsw . Also, we used the mapping ec2go to
translate values of the EC-number attribute into GO terms, which we refer to
by GOec. During the grouping process, knowledge in the GO ontology was used
to compute similarity scores. To explore the quality of the available mappings,
we decided to analyze GOann, GOsw and GOec in different combinations. All
these combinations resulted in variants of our original data source that included
only data entries annotated by these terms. As a result, the number of analyzed
data entries differed among the test cases. For instance, GOann and GOsw an-
notations were available for 75 data entries, while GOann and GOec occurred in
92 data entries.

Classifications. The data entries were, for the whole data source, manually
classified into 28 disjoint classes according to biological function. For instance,
all data entries in one of the classes relate to Phosphofructokinase (which is
the enzyme responsible for turning Fructose-6-phosphate into Fructose-1,
6-biphosphate). Data entries belonging to the same class may describe the same
real-world protein, proteins having similar function, fragments of proteins having
the same or similar function, and hypothetical proteins that are strongly believed
to have the same or similar function. In the classification the two largest classes
consist of 56 and 53 data entries, while 13 classes consist of a single data entry.
The largest classes represent the enzymes Pyruvate kinase and Phosphofructok-
inase, which are the most prominent regulatory enzymes in glycolysis.

The isozyme classification was constructed by further dividing the classes in
the function-based classification. For example, the data entries in the Phospho-
fructokinase (PFK) class were distributed into three classes: Liver-type PFK,
Platelet-type PFK and Muscle-type PFK. The classification resulted in 52 dis-
joint classes, where the two largest classes contained 29 and 27 data entries,
while 31 classes contained a single data entry.

3.2 Library of Similarity Functions

We used domain independent and domain dependent similarity functions.
EditDist(v1, v2) is a function that computes similarity based on the edit dis-

tance between strings. The distance between strings v1 and v2 is defined by the
least number of operations needed to turn v1 into v2. The allowed operations
are insertions, deletions and replacements. The distance is transformed into a
similarity score by the function: score = 1 − distance

MaxLength(v1,v2)
.

SeqSim(v1, v2) is a function that performs pairwise sequence alignment and
returns a similarity score between sequences. We use a sequence alignment tool
implemented in Java, JAligner [JAligner], to compute an alignment between the
sequences. The tool implements an improved version of the Smith-Waterman
algorithm for producing gapped alignments between sequences. The similarity
score is defined as the number of matches in the alignment divided by the length
of the alignment.



A Method for Similarity-Based Grouping of Biological Data 143

SemSim(v1, v2) is a function that computes the similarity between two sets of
GO terms. To evaluate the distance between two GO terms we use an edge-based
algorithm that counts the number of edges needed to traverse the GO hierarchy
from one term to another. The algorithm counts the number of is a relationships
needed to go up in the hierarchy u, the number of is a relationships needed to go
down in the hierarchy d and the number of other relationships o. The similarity
between two GO terms is then defined as score = e

−0.5·(( u
pu

)2+( d
pd

)2+( o
po

)2), where
pu, pd and po are weights for the different types of edges. In the test cases we
used pu=2, pd=1 and po=1. Two sets of GO terms are defined to be similar if
each term of one set is similar to a term in the other set.

Table 1. Test cases. Grouping on protein function. ne - number of analyzed entries,
ng - number of groups, nc - number of classes, p - purity, E - entropy, F - F-measure,
MI - mutual information.

Test Grouping rule ne ng nc p 1-E F MI
case
1 SemSim(GOann)> 0.95 71 23 24 0.90 0.93 0.88 0.86

GOann for component, process, function domains
2 SemSim(GOann)> 0.95 67 26 23 1.00 1.00 0.97 0.91
3 SemSim(GOann + GOsw)> 0.95 75 23 24 0.80 0.87 0.79 0.79
4 SemSim(GOann + GOec)> 0.95 92 26 25 1.00 1.00 0.99 0.88
5 SemSim(GOann + GOsw + GOec)> 0.95 93 26 25 0.86 0.93 0.88 0.81
6 SemSim(GOann + GOsw + GOec)> 0.95; 93 26 25 0.86 0.93 0.88 0.81

parent GO terms removed
7 SemSim(GOann)> 0.95 or 93 14 25 0.48 0.65 0.51 0.59

SemSim(GOsw)> 0.95 or
SemSim(GOec)> 0.95

8 SemSim(GOann)> 0.95 or 92 26 25 1.00 1.00 0.99 0.88
SemSim(GOec)> 0.95

9 SemSim(GOann + GOec)= 1 92 26 25 1.00 1.00 0.99 0.88
10 SemSim(GOann + GOec)> 0.85 92 21 25 0.70 0.78 0.71 0.68
11 SemSim(GOann + GOec)> 0.95 92 29 25 1.00 1.00 0.84 0.88

grouping algorithm: cliques
12 EditDist(definition)> 0.9, for GOann + GOec 92 67 25 1.00 1.00 0.59 0.77
13 EditDist(definition)> 0.7, for GOann + GOec 92 55 25 0.96 0.97 0.66 0.76
14 SeqSim(sequence)> 0.85, for GOann + GOec 92 44 25 1.00 1.00 0.74 0.81
15 EditDist(definition)> 0.85 190 94 28 0.97 0.98 0.54 0.57
16 EditDist(product)> 0.85 190 105 28 0.99 0.99 0.49 0.57
17 EditDist(definition)> 0.7 190 68 28 0.81 0.87 0.56 0.50
18 EditDist(product)> 0.7 190 78 28 0.95 0.98 0.64 0.58
19 EditDist(definition)> 0.9 or 190 64 28 0.94 0.96 0.70 0.58

EditDist(product)> 0.9 or
(EditDist(definition)> 0.6 and
EditDist(product)> 0.6)

20 SeqSim(sequence)> 0.85 190 59 28 0.99 0.99 0.66 0.62



144 V. Jakonienė, D. Rundqvist, and P. Lambrix

Table 2. Test cases. Grouping on isozymes. ne - number of analyzed entries, ng -
number of groups, nc - number of classes, p - purity, E - entropy, F - F-measure, MI -
mutual information.

Test case Grouping rule ne ng nc p 1-E F MI
21 EditDist(definition)> 0.85 92 67 47 0.89 0.95 0.73 0.85
22 SemSim(GOann + GOec)> 0.95 92 26 47 0.59 0.79 0.65 0.79
23 EditDist(product)> 0.85 92 56 47 0.83 0.92 0.73 0.84
24 SeqSim(sequence)> 0.85 92 44 47 0.91 0.96 0.90 0.91
25 EditDist(definition)> 0.85 190 94 52 0.87 0.93 0.63 0.67
26 EditDist(product)> 0.85 190 105 52 0.88 0.94 0.58 0.68
27 SeqSim(sequence)> 0.85 190 59 52 0.95 0.97 0.91 0.75

3.3 Specification of Grouping Rules

The studied grouping rules are collected in the second column of table 1 and table
2 for the grouping tasks on function and isozymes, respectively. The similarity
functions in the tables are shown with one argument representing the type of the
compared values. When exploring grouping on function, we developed a number
of test cases based on various combinations of GOann, GOsw and GOec (test cases
1-11). All these cases, except test case 1, use only function-related terms in the
GO ontology. In the test cases 12-20 we analyzed the applicability of the values in
attributes Definition, Product and Sequence for grouping on function. The
test cases 8-14 are run on the data entries used in test case 4, since test case 4 had
the best results among the test cases run on GO terms. The test cases 15-20 are
performed on the whole data source, i.e. in total 190 data entries. The test cases
include experiments with different thresholds, complex rules combining similarity
functions and an experiment with a different grouping algorithm (test case 11).
Similarly as for grouping on function, we tested the applicability of Definition,
Product, GO annotation and Sequence for grouping on isozymes. Table 2
contains the grouping rules applied on the data entries analyzed in test case 4
and the grouping rules applied on all data entries in the data source.

3.4 Pairwise Grouping and Grouping

To perform the actual grouping of the data entries based on a given rule, first
pairwise grouping between the data entries and then, grouping of similar data
entries are performed. In our experiments, all pairs of data entries in the data
source are compared to each other and are identified as similar or not. To orga-
nize the similar data entries into groups we experimented with two approaches:
cliques and connected components. Cliques require that all data entries in a
group are similar to each other. In this approach, the generated groups may
overlap as all similarity relationships are taken into account. Connected com-
ponents collect all data entries that are directly or transitively similar to each
other into a single group. As a result, the approach generates disjoint groups.
From the discussed test cases only test case 11 uses cliques. For the other test
cases we used connected components.



A Method for Similarity-Based Grouping of Biological Data 145

3.5 Evaluation

To evaluate the results of the test cases we used external quality measures de-
scribed in [Str02], purity, F-measure, entropy and mutual information. These
measures are defined as follows. Let n be the total number of analyzed data
entries, ng the number of generated groups and nc the number of given classes.
Let ng

i denote the number of entries in group i and nc
j denote the number of

entries in class j. Let nij represent the number of entries that are common to
group i and class j. For each group i and class j, the precision is defined as
pij = nij

ng
i

and the recall as rij = nij

nc
j
.

Purity evaluates the average precision of the groups with respect to their best
matching classes. For each group i purity is defined as pi = maxj{pij}. The
purity for the whole grouping is defined as

p =
ng∑
i=1

ng
i

n
pi

F-measure is the average F-measure of the classes with respect to their best
matching groups. The measure combines precision and recall into a single
value. For each combination of group i and class j the F-measure is Fij =
2·pij ·rij

pij+rij
. The F-measure for class j is defined as Fj = maxi{Fij} and the

F-measure for the whole grouping is defined by

F =
nc∑

j=1

nc
j

n
Fj

Normalized entropy analyzes how on average the data entries in each group
distribute among the classes. Ei = − ∑nc

j=1 pij lognc pij is the normalized
entropy for group i and the total normalized entropy for the whole grouping is

E =
ng∑
i=1

ng
i

n
Ei = − 1

n

ng∑
i=1

nc∑
j=1

nij lognc pij

Mutual information is the average measure of correspondence between each
group and class. The mutual information is calculated as

MI =
2
n

ng∑
i=1

nc∑
j=1

nij logng·nc

( nij · n
ng

i · nc
j

)

The evaluation results for each test case are shown in tables 1 and 2.

3.6 Analysis

In this subsection we take a closer look at the grouping and evaluation results
for our test cases. We compare different test cases and discuss issues that have



146 V. Jakonienė, D. Rundqvist, and P. Lambrix

an impact on the results. Further, using 3 examples we discuss interesting cases
in some more details.

Best Test Cases. The test cases described in the tables 1 and 2 reveal that
grouping on GO annotations combining GOann and GOec is best suited for
grouping the data entries on function (test cases 4, 8 and 9) and that grouping on
Sequence is best suited for grouping on isozymes (test cases 24 and 27). For the
test cases 4, 8 and 9, the grouping results were only imprecise in the distribution
of data entries of one class between two groups (see example 2 below). The same
grouping results for the test cases 4, 8 and 9 could be caused by the type of the
compared GO annotations and the type of the used grouping approaches. In the
case of grouping on isozymes, grouping on sequence performed reasonably well
both on the fragment of the data source and on the whole data source.

Grouping on GO Annotation. Test cases 1 and 2 show that the removal
of the component and process terms from GOann increases the quality of the
grouping on function. For instance, each group in test case 2 includes entries
from a single class (p=1). However, in some cases valuable information may
be removed (see example 2 below). This suggests that a method that assigns
different weights to different types of GO terms may improve the results.

From the analysis of test cases 2-8 we conclude that spkw2go mappings are
not suitable for grouping on function. SWISS-PROT keywords are quite general
and are mapped to high level GO terms. For instance, some SWISS-PROT data
entries contain ’Glycolysis’ as a keyword, while all the data entries in the data
source relate to ’Glycolysis’. Therefore, some data entries where grouped together
even though they differed in more specific functions, i.e. belonged to different
classes. For instance, test case 3 generated 2 groups containing data entries
from several classes. In contrast to spkw2go, GO terms obtained through ec2go
mappings were specific enough. This is because EC numbers precisely identify
the function of the described sequence. For instance, EC:2.7.1.11 maps to the
GO term ’6-phosphofructokinase activity’, which is a very specific function.

Test cases 5 and 6 show that only using the most specific GO terms in the data
entries, does not have an impact on the grouping result. This depends partly on
the available GO annotations, which for some data entries match exactly. It also
depends on the approach to compare sets of GO terms.

Grouping on Definition and Product. Definition- and Product-based
groupings perform worse than Sequence-based groupings both for function and
isozymes. The large number of generated groups in test cases 15-18 shows that
the data values in these fields vary a lot. For instance, about 3 times more
groups are generated than there are classes in the case of grouping on function
for the threshold 0.85. Also, Product values are not available for some data
entries. From the current test cases no definite conclusions can be made about
the suitability of these types of data for grouping tasks. Further studies are
needed.

Grouping on Sequence. Based on test cases 14 and 20, we can conclude that
grouping on sequences is too specific to be used for grouping data entries on



A Method for Similarity-Based Grouping of Biological Data 147

function. There are nearly twice as many groups as there are classes. For instance,
the data entries of the Pyruvate kinase class were distributed between a group
covering muscle-type sequences and a group covering liver-/red blood cell-type
sequences. This example confirms the observation that sequence similarity based
grouping is better suited for grouping on isozymes.

Impact of Threshold. Test cases 4, 9 and 10 where grouping is performed on
GOann and GOec with thresholds 0.95, 1 and 0.85, show that the best quality
results are returned when all GO terms of one data entry appear among GO
terms of the other data entry. For a slightly lower threshold, the quality of the
results drops fast. The test cases 15-18 show that Product performs better for
the lower threshold, while for Definition-based grouping, although less groups
are generated, the decrease of the threshold produces lower quality results. In
general, experiments with different thresholds allow us to explore the correlation
of data entries at different levels of similarity.

Complex Rules. Test cases 7, 8 and 19 illustrate the use of complex rules
that gave us a better understanding of the data and enabled an increase of the
quality of the grouping results. The negative impact of GOsw is shown by test
case 7 that performs much worse than test case 8. The grouping rule combining
Definition and Product (test case 19) resulted in increased quality of the
results in comparison with test cases 15-18, which perform grouping on a single
attribute.

Impact of Grouping Algorithm. Test cases 4 and 11 illustrate the impact
of the different grouping approaches, in our case, connected components and
cliques. As cliques put stronger requirements on the grouped data entries and
allow overlapping groups (see example 3 below), a larger number of groups are
generated and a lower F-measure is obtained. Based on the measures, however,
we cannot make a decisive claim about which of the two grouping approaches
performs better. The nature of the approaches is very different. They complement
each other and give different ways of presenting the results. For instance, by
comparing the results of the grouping approaches, subgroups of data entries
that are interconnected in a stronger way to each other than to the rest of the
entries in the group, can be located. Such subgroups could be generated for
several reasons, such as the fact that the described sequences may slightly differ
in functionality or that the data entries may have incomplete information.

In the remainder of this section we investigate some of the results in more
details.

Example 1. A Group Covers Several Classes. In this example we take a
closer look at group 2 of test case 1. The group includes data entries from four
classes: Phosphofructokinase (class 3), Pyruvate dehydrogenase (class 11), Nu-
clear receptor subfamily 1 (class 16) and Pyruvate dehydrogenase kinase (class
27). The data entries belonging to these classes together with their GO annota-
tions are given in table 3.

A combination of reasons caused the data entries to be organized into the
same group. 1) The algorithm that compares sets of GO terms considers the



148 V. Jakonienė, D. Rundqvist, and P. Lambrix

Table 3. Test case 1. Data entries in group 2.

Accession # Class # GO Annotations
Q01813 3 GO:0005945, GO:0003872, GO:0006096

NP 000280 3 GO:0005945, GO:0005524, GO:0016301
GO:0000166, GO:0016740, GO:0000287
GO:0003872, GO:0006096, GO:0006006
GO:0005977, GO:0006110

NP 002618 3 GO:0005945, GO:0005524, GO:0016301
GO:0000166, GO:0016740, GO:0000287
GO:0003872, GO:0006096

P11177 11 GO:0004739, GO:0006099
P29803 11 GO:0004739
P10515 11 GO:0005967, GO:0004742, GO:0006085

NP 000275 11 GO:0005739, GO:0016491, GO:0004739
GO:0016624, GO:0006096, GO:0008152
GO:0006084

P08559 11 GO:0005739
NP 005114 16 GO:0005634, GO:0046872, GO:0003707

GO:0003700, GO:0003713, GO:0003714
GO:0006350, GO:0008203, GO:0007165
GO:0008206, GO:0006355

NP 002603 27 GO:0005739, GO:0005524, GO:0004672
GO:0004740, GO:0006006, GO:0006468

data entries Q01813, NP 000280, NP 002618, P10515, NP 000275, NP 005114
and NP 002603 to be similar to P08559 since the only GO term in the data entry
P08559, GO:0005739 - the component term “Mitochondrion”, has high similarity
with other component terms in the other data entries (marked by bold in table
3). Similarly, the data entries P11177 and NP 000275 are similar to P29803
because of the included GO:0004739. The comparison algorithm ignores the fact
that some data entries have more GO terms assigned than the others. 2) The test
case uses a grouping approach that assumes that similarity between data entries
is transitive. As a result, two groups of similar data entries identified previously
are connected by NP 000275 into a single group of similar data entries. 3) The
fact that some GO terms in the annotation were general and that some of the
data entries contained very few GO terms also caused the classes to be grouped
into a single group.

Example 2. A Class Distributed Among Several Groups. In test case
4 only class 11, describing Pyruvate dehydrogenase complex, is not matched
perfectly by a group. The data entries are divided into two groups: P11177,
NP 000275, P08559 and P29803 are grouped together, while P10515 appears in
a separate group. The grouping result can be explained by the fact that class 11
describes an enzyme complex that consists of multiple copies of the three types
of enzymes E1, E2 and E3. The goal of the whole enzyme complex is to build
the molecule acetyl-CoA from Pyruvate and CoA, but different types of enzymes



A Method for Similarity-Based Grouping of Biological Data 149

belonging to the complex vary in their function. For instance, E1 has the ma-
jor catalytic function, namely the pyruvate dehydrogenase function [BTS02]. In
our case, P11177, NP 000275, P08559 and P29803 describe E1, while P10515
describes E2. The difference between functions is also reflected in the avail-
able GO annotations: P11177, NP 000275, P08559 and P29803 are annotated
with “pyruvate dehydrogenase (acetyl-transferring) activity”, while P10515 has
“dihydrolipoyllysine-residue acetyltransferase activity”. These two terms are far
from each other in GO. Test case 1 is the only one that organizes all the data
entries into a single group. This illustrates how the knowledge from the com-
ponent and process GO ontologies may positively contribute to the grouping
on function. For the other test cases, where only GO terms from the function
ontology were used, the available GO annotations are too specific to identify the
whole enzyme complex.

Fig. 2. Clique-based grouping. Class 8.

Example 3. Clique-Based Grouping. In test case 11 we used a clique-based
algorithm for grouping similar data entries, which requires that all data entries in
a group are similar to each other. The grouping result had a few cases where data
entries in a class are distributed between 2 groups. For instance, the data entries
of class 8, which describes Phosphoglycerate mutase, were distributed between
2 overlapping groups: one group contained P07738, Q8N0Y7 and P15259, while
the other group included P07738, Q8N0Y7 and P18669 (figure 2). P15259 and
P18669 are not found to be similar as the GO annotations differ from each other
by GO:0042803 and GO:0004083, respectively. As a result, the data entries are
moved to separate groups. P07738 and Q8N0Y7 are included in both of the
groups as they are found to be similar to P15259 and P18669. We have checked
that lowering the threshold, e.g. to 0.8, would combine all four data entries to a
single group. This example illustrates the high impact of the different aspects in
the grouping procedures on the grouping result; in this case the threshold, the



150 V. Jakonienė, D. Rundqvist, and P. Lambrix

approach for comparing sets of GO terms and the approach for grouping similar
data entries.

4 Conclusion

In this paper we motivated the need for environments that support the devel-
opment and evaluation of similarity-based grouping procedures. We proposed a
method that identifies the main components and steps that are important for
such environments. Further, we illustrated the method by analyzing test cases
for grouping of protein data entries with respect to their function and with re-
spect to what classes of isozymes they belong to. The test cases illustrate the
complexity of similarity-based grouping tasks. The choices made at the different
steps in a grouping procedure have a large impact on the quality of the grouping
results.

The test cases gave us also insights in different issues as well as interesting
topics for future work. For instance, for the analyzed data source grouping on
GO annotations combining GOann and GOec is best suited for grouping func-
tion and grouping on Sequence is best suited for grouping on isozymes. Further
studies are needed to investigate how other attributes can be useful for grouping
tasks in life sciences. When grouping based on GO annotations, it is important
to be aware of the fact that the annotations may be incomplete. In this paper
we illustrated the possibility of partially compensating the lacking information
by using mappings available at the GO Consortium. We observed that different
mappings can be useful to different degrees. For instance, the mappings trans-
lating EC-number into GO terms (ec2go) gave good results, while mappings
translating Keywords in GO terms (spkw2go) were too general. When working
with GO terms it is important to distinguish between general and more spe-
cific terms as they contribute differently to our knowledge. A number of test
cases showed the importance for deeper studies to develop suitable methods to
compare sets of GO terms and to explore their impact on the results.

The analysis and evaluation of the test cases was a time-consuming process.
Tools are needed to support the different steps in our method. For instance, we
need support at different levels of detail for the generation and analysis of the
grouping results, the visualization and analysis of related data entries, and the
analysis of the influence of external knowledge.

Acknowledgements

This research work was funded by CUGS (the Swedish national graduate school
in computer science) and CENIIT (Center for Industrial Information Technol-
ogy). The first and third authors are also members of the EU Network of Excel-
lence REWERSE (Sixth Framework Programme project 506779, working group
on a Semantic Web for Bioinformatics).



A Method for Similarity-Based Grouping of Biological Data 151

References

[AGMML90] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic
local alignment search tool. Journal of Molecular Biology, 215:403-410.

[BTS02] Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. W.H. Freeman
and Company, New York.

[BBBDN05] Bilke A, Bleiholder J, Böhm C, Draba K, Naumann F (2005) Au-
tomatic Data Fusion with HumMer. Demo at VLDB Conference, pp
1251-1254.

[CSC05] Couto FM, Silva MJ, Coutinho P (2005) Semantic similarity over the
gene ontology: family correlation and selecting disjunctive ancestors.
Conference on Information and Knowledge Management, pp 343-344.

[DS05] Doms A, Schroeder M (2005) GoPubMed: Exploring PubMed with the
GeneOntology. Nucleic Acids Research, 33:W783-W786.

[GH04] Gabaldon T, Huynen MA (2004) Prediction of protein function and
pathways in the genome era. Cellular and molecular life sciences :
CMLS, 61(7-8):930-944.

[GO00] The Gene Ontology Consortium (2000) Gene Ontology: tool for
the unification of biology. Nature Genetics, 25(1):25-29. http://www.
geneontology.org/.

[HGPWW04] Herbert KG, Gehani NH, Piel WH, Wang J, Wu CH (2004) BIO-
AJAX: An Extensible Framework for Biological Data Cleaning. SIG-
MOD Record, 33(2):51-57.

[JAligner] Java implementation of the Smith-Waterman algorithm for biological
sequence alignment. http://jaligner.sourceforge.net/

[KLKTB04] Koh JLY, Lee ML, Khan AM, Tan PTJ, Brusic V (2004) Dupli-
cate Detection in Biological Data using Association Rule Mining.
ECML/PKDD Workshop on Data Mining and Text Mining for Bioin-
formatics, pp 31-37.

[Lev66] Levenshtein VI (1966) Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10(8):707-710.

[LSBG03] Lord PW, Stevens R, Brass A, Goble CA (2003) Investigating semantic
similarity measures across the Gene Ontology: the relationship between
sequence and annotation. Bioinformatics, 19(10):1275-1283.

[PPF95] Pfeifer U, Poersch T, Fuhr N (1995) Searching Proper Names in
Databases. Conference on Hypertext - Information Retrieval - Mul-
timedia, pp 259-275.

[SS02] Shamir R, Sharan R (2002) Algorithmic Approaches to Clustering
Gene Expression Data. Chapter in Current Topics in Computational
Biology, Jiang T, Smith T, Xu Y, Zhang MQ editors, MIT Press, pp
269-299.

[SFSZ05] Speer N, Fröhlich H, Spieth C, Zell A (2005) Functional Distances for
Genes Based on GO Feature Maps and their Application to Clustering.
IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB), pp 142-149.

[SKK00] Steinbach M, Karypis G, Kumar V (2000) A comparison of document
clustering techniques. KDD Workshop on Text Mining.

[Str02] Strehl A (2002) Relationship-based Clustering and Cluster Ensembles
for High-dimensional Data Mining. PhD thesis, University of Texas at
Austin.



On Querying OBO Ontologies Using a DAG
Pattern Query Language�

Amarnath Gupta and Simone Santini

San Diego Supercomputer Center
University of California San Diego, La Jolla, CA 92093, USA

{ssantini, gupta}@sdsc.edu

Abstract. The Open Biomedical Ontologies (OBO) is a consortium
that serves as a repository of ontologies that are structured like directed
acyclic graphs. In this paper we present a language DQL for querying a
database of directed acyclic graphs. The query language has a compre-
hension style syntax and contains a pattern specification sub-language
DPL. DPL can be viewed as an extension of tree-pattern query lan-
guage like XPath. The language allows extraction of nodes, paths and
subgraphs from DAGs, and permits construction of result structures by
composing them. We show that using such a language on OBO ontologies
(such as the gene ontology), we can express more complex and scientifi-
cally valuable queries.

1 Introduction

Query languages and query evaluation techniques for the retrieval and manip-
ulation of graph-structured data have been investigated since the late 80s [1,2],
through the era of object-oriented data models [3,4,5] up to the more recent gen-
eral interest in semistructured data [6,7,8] and ontologies represented in RDF
[9]. Graph-structured data appear naturally in many modern applications, espe-
cially in biological information systems [10], chemical structure analysis [11], and
social network analysis. In these application domains, a surprisingly large frag-
ment of graph-structured data turn out to be directed and acyclic. Specifically
in the domain of biomedical and biological ontologies, the majority of the onto-
logical structures are designed to be directed acyclic graphs (DAGs). The Open
Biomedical Ontologies (http://obo.sourceforge.net/) is an umbrella consortium
that serves as a repository of many different but often inter-related ontologies,
where the nodes of the graphs represent terms used in the vocabulary of a spe-
cialized biological domain, and the edges between nodes are typically labelled
by the strings “isa”, “part-of” or “develops-from”. Furthermore, given the mul-
tiplicity and categories of ontologies emerging today, new needs are developing
to query across ontologies and composing ontologies together. As the ontologies
grow and become more complex, searching through them will require a more
complex query mechanism that natively operates on graphs, especially DAGs.
� Supported in part by NSF ITR Grant EIA-0205061, and the NLADR grant from

NSF.

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 152–167, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



On Querying OBO Ontologies Using a DAG Pattern Query Language 153

Fig. 1. A simplified fragment of the Biological Process component of Gene Ontology.
The names of the nodes have been abbreviated for clarity.

Despite this need, most of the systems available to life scientists are mostly
operated with visual interfaces allow only simple operations like keyword based
node search, descendant enumeration, shortest path finding and neighborhood
operations on graphs. This paper is an early step toward searching repositories
of large ontological structures using a DAG query language, and similar in its
intent as [12].

Example 1. As a motivational example, consider the well known Gene Ontology
(GO) (www.geneontology.org) that consists of three DAG-structured compo-
nents called biological processes (BP), molecular functions (MF) and subcellular
components (SC). In Figure 1, a fragment of the BP DAG is shown. Here, an
edge represents an superclass relation, such that n1 → n2 means that the process
n2 is a specialization of the process n1. Nodes in this graph represent tuples of a
relation N which, in our simplified example, has three attributes id, name and
definition. To make the node names simpler, just consider that a node with the
substring “ met” is a metabolism process, a node with “ cat” is a catabolism
process and a node with “ biosyn” is a biosynthesis process. Given this example
DAG, a number of different types of queries can be asked:

1. Which biosynthesis processes under lipid biosynthesis are also classified as
amine biosynthesis? (Q1)

2. How does phosphatidylethanolamine biosynthesis (phos biosyn in Fig. 1)
derive from cellular metabolism (cell met)? (Q2)

3. Is there a case where a xenobiotic process (e.g., xen met) is a subprocess of
at least two forms of cellular metabolism? (Q3)

4. construct a reduced data graph by deleting all metabolism nodes except
met, and connecting the non-deleted parent(s) of a deleted node n to its
non-deleted children. (Q4)

Consider the first query. Since the graph represents a classification structure
(i.e., an is-a graph) we interpret the expression “A classified as B” to mean “A
reachable from B” in this DAG. Thus, this query can be expressed as the pattern
query

reachable from(X, lipid biosyn) ∧ reachable from(X, amin biosyn) ∧ substr(‘biosyn’,

X) (Q1′)



154 A. Gupta and S. Santini

root
conditional phenotypes (cp)
cell cycle defects (ccd)
mating and sporulation defects (msd)

mating efficiency (me)
sporulation efficiency (se)
inappropriate sporulation (is)

KAR4
RIM1 ***
ABP1
...

other mating and sporulation defects (omsd)
...
cell morphology and organelle nutrients (cmon)

flocculence (fl)
budding mutants (bm)

bud localization (bl)
multibudded cells (mbc)
pseudohyphae formation (phf)

GDH3
TEC1
RIM1 ***

...
...

stress response defects (srd)
...

Fig. 2. A fragment of the Yeast Phenotype Classification. Some genes (leaf level) like
RIM1 have multiple parents. The edge from the parent term of a gene to the gene is
“produced-by-mutating”.

where the last predicate is a syntactic way to state that X is a biosynthesis pro-
cess; the query would return the set of two nodes (phos biosyn, pNm biosyn).
Notice that since X must be reachable from lipid biosyn as well as amin biosyn,
the query expresses a DAG-pattern, notionally akin to tree pattern queries ex-
pressed by XPath queries. Of course, our data model is much simpler than XML
models, in that we only consider child and descendant relationships and com-
pletely disregard order among the children of a node.

Example 2. Next consider the yeast phenotype classification (YPC) scheme
(available at http://mips.gsf.de/genre/proj/yeast/searchCatalogFirst
Action.do?db=CYGD) – the non-leaf nodes of this scheme represent phenotype
terms, while the leaf nodes represent genes. Since one gene can be responsible
for multiple phenotypes, the structure of the YPC (Figure 2) is a DAG when
leaves are considered (such as the gene RIM1 in the figure) and is an is-a tree
over the rest of the nodes. For the purpose of this discussion, we will ignore all
the descriptors associated with the genes and the YPC terms – we will only use



On Querying OBO Ontologies Using a DAG Pattern Query Language 155

the fact that almost all yeast genes have references to GO-ids. Hence, the YPC
structure is joinable with the BP ontology through the GO-ids. This enables us
to ask scientific queries like: “merge all paths P1 reachable from the node named
tanscription, with all paths P2 reachable from the yeast phenotype sporulation
defect such that X is a node in P1, Y is a node in P2 and X.id = Y.GOid by
creating an edge labeled e from X to Y ”. Biologically, query creates an asso-
ciation between biological processes and relevant phenotypes. Computationally,
the query first retrieves P1 and P2 through a join query and then merges them
through a construction.

The intent of this paper is to present a query language and its corresponding
algebra for the retrieval and manipulation of DAG-structured data to achieve
the capabilities described above. The query language will have a sublanguage
to express query patterns, a formal way to manage collections of intermediate
result graphs, and operations to manipulate and construct graphs.

2 The DAG Data Model

As mentioned, the DAGs we consider have nodes that represent tuples from
some relation N . With no loss of generality, we can assume that the id attribute
of nodes is globally unique, so that nodes are represented by their ids. We only
consider DAGs with unlabeled edges; we also assume that the children of any
node of the data DAG are unordered. Henceforth, unless explicitly mentioned,
we use the term graph (correspondingly, sub-graph) to mean this class of DAGs
and its substructures.

In this paper, our focus is to introduce a language to manipulate the structure
of the graph (we use the term graph to refer to DAGs from this point on); the
retrieval and manipulation of the node content is performed using standard
relational algebra. To manipulate the graph structure, on the other hand, we
need to have a type system with basic types and type constructors. For example,
to define a set of paths, we need to have the type set(list(skolem)) where skolem
is the data type of all ids, and is a data type for which no operations are defined
except value equality. In our model all nodes are typed. If α is the type of a node
then we will use the notation ν[α] for a generic collection monoid of type ν with
elements of type α (e.g., set(GO-node-type)). For this monoid three functions
are defined:

i) nilν : ν(α) (the empty collection);
ii) Uν : α → ν(α) (the singleton);
iii) ν : ν(α) × ν(α) → ν(α) (the join, like the union operator for a set

monoid).

We also define the projection operator pi : α1 × · · · × αn → αi and the record
construction operator ( , , . . . , ) : α1 × · · · αn → 〈α1 × · · · × αn〉. To introduce
a few terms used through the paper, a node n of a graph g is terminal if it has
no outgoing edges, and it is initial if it has no incoming edges; ⊥(g) is the set of
all terminal nodes of the graph g, and �(g) is the set of initial nodes. Since our
graphs are acyclic, for each g, neither ⊥(g) nor �(g) are empty.



156 A. Gupta and S. Santini

3 Our Query Language DQL

We start by observing that the query language presented here assumes that the
data is in the form of a DAG and not a graph containing cycles. While it is easy
to show that the pattern language cannot express a cycle, we do not ask how
the queries would behave if the underlying data had cycles.

3.1 An Informal Introduction

We introduce the query language using the graph G1 shown in Figure 3 as the
reference. First, we focus on the pattern language DP . The pattern (v = 1)
matches a set of nodes for which the value of the variable v is 1. The pattern
true matches all nodes of the DAG. We use the symbol − to denote an edge
from the node to the left of − to the node to the right of it. Thus, the pattern
(v = 1) − (v = 2) matches the edges [1, 1] → [3, 2] and [2, 1] → [4, 2]. DP allows
the use of the Kleene star to refer to 0 or more occurrences of the subpattern
within its scope. The pattern (v = 1)[−(v = 2)] ∗ −(v = 1) matches the graphs
have a node with v = 1 is followed by a chain of any number of nodes with
v = 2, which is then followed by another node with v = 1 (not the same node as
the first since the graph is acyclic). The edge chains matching the pattern are
[1, 1] → [3, 2] → [7, 1], [1, 1] → [3, 2] → [2, 1], [1, 1] → [3, 2] → [4, 2] → [8, 1], and
so on. Now, let us associate variables x and y to two elements of the pattern. The
augmented pattern becomes y : (v = 1)[−(v = 2)] ∗ −x : (v = 1). Although here
the variables are only associated with nodes, in general, variables can associated
with any subpattern, such as an edge chain or a subgraph, as illustrated later in
the paper. The variable association implicitly produces matches for the variables
in addition to the match for the whole pattern. In this example, the pattern
produces the y, x tuples {([1, 1], [2, 1]), ([1, 1], [7, 1]), ([1, 1], [8, 1]), ([2, 1], [8, 1])} if
we eliminate duplicates.

As the final element in this section, we would like to produce a graph for
each xy pair by constructing an edge from each instance of x to its correspond-
ing y. This operation of graph creation requires us to produce a set of edges,

[0, 5]
��

[1, 1]

��������

[2, 1]

����������������� [3, 2]��

����
��

��
��

��
��

� ��������

[4, 2]

��������
��������

��
[5, 3]

��������
[6, 2]

��������

[7, 1] [8, 1]

(1)

Fig. 3. Our running example. Each node has an id (the first number) and an attribute
called v, whose value is shown in the second number.



On Querying OBO Ontologies Using a DAG Pattern Query Language 157

which the pattern language cannot express because the pattern language only
performs matching. To accomplish the graph construction, we place the pattern
in a monoid comprehension framework, and express it as:

∪[{x − y|g � y : (v = 1)[−(v = 2)] ∗ −x : (v = 1) ← G1}]

which is read as: Let g be that substructure of G1 that satisfies the specified
pattern π. Using the variables x and y of g construct the edge x − y for each
instance x, y satisfying π, and form a set union of these edges.

3.2 Formal Description of Pattern Language DP

To formalize the ideas described in the previous subsection, we observe that
pattern π in the pattern language DP is generated by the following rules:

i) A predicate C in which the free variables are the names of the components
of the node data type is a pattern; in particular t (the value “true”) is a
pattern;

ii) if π1 and π2 are patterns, then π1 − π2 is a pattern;
iii) if π and π′ are patterns, then π′[−π]∗ and [π−] ∗ π′ are patterns;
iv) if π1, . . . , πn are patterns, and ν is a patterns then {π1−, . . . , πn−}ν, and

ν{−π1, . . . ,−πn} are patterns;
v) if π1, . . . , πn are patterns, then π1| . . . |πn is a pattern;
vi) if π is a pattern and v a variable name, then v : π is a pattern;
vii) nothing else is a pattern.

These cases are illustrated in Figure 4.
The grammar of the language is

<π> ::= C|<π> − <π>
| <π>[−<π>]∗
| [<π>−] ∗ <π>
| <π>’{’ − <π>{, −<π>}∗’}’
| ’{’<π> − {, <π>−}∗’}’<π>
| <π>|<π>{|<π>}∗
| (<π>)|<literal> : <π>

Note that the brackets { and } have been placed in quotes when they ap-
pear as terminals to avoid confusion with the repetition operator of the gram-
mar. Condition have higher precedence that the structural operators, and − has
precedence over |. Parentheses can be used whenever necessary. We use the short-
cut # ≡ [−t] ∗ − (or, equivalently, −[t−]∗), making the symbol # the notional
equivalent of // in XPath.

It is important to point out a few distinctive aspects of this DAG pattern
language.

In the informal example, we stated that − represents an edge between two
nodes. In this section, we generalize this notion to represent a “connection” be-
tween two subDAGs, one satisfying pattern π1 and another satisfying pattern π2



158 A. Gupta and S. Santini

Fig. 4. Examples DAGs corresponding to the different patterns described in the text.
(a) π1 − π2, (b) π1[−π2](2, 4), (c) τ{−π1, −π2} and (d) {π1−, π2−}ν.

(construction rule ii above). To this end, we define a stitch relationship (|〉), which
generalizes the child relationship for tree-structured data. given two graphs g1
and g2, let g1|〉g2 be the graph obtained by connecting all terminal nodes of g1
to all initial nodes of g2. Thus the semantics of rule ii is that if combined pattern
π ≡ π1 − π2, and the graph g matches π then there are two disjoint sub-graphs
of g, namely g1 and g2 such that g1 matches π1, g2 matches π2, and g = g1|〉g2.

Next, we use the |〉 operation to generalize the twig structure of tree pattern
languages. For DAGs we need both the split structure of trees denoting branches
emanating from a node, as well as a merge structure denoting edges converging
on to a node. In this vein, the expression within the {...} (rule iv) is a branching
where the patterns on the different branches are required to be distinct. Thus
the whole pattern represents a fork (τ{...}) or merge ({...}ν) pattern, or a com-
bination. Formally, if π ≡ τ − {π1−, . . . , πn−}ν, then g matches π if there are
disjoint sub-graphs of g g′, g1, . . . , gn, g′′ such that g′ matches τ , for each i gi

matches πi, g′′ matches ν, and, for all i g′|〉gi and gi|〉g′′ are sub-graphs of g.
Finally, the language offers a syntax to specify the number of recurrences of a

pattern. We use the shortcuts πn ≡
n︷ ︸︸ ︷

π − π − · · · − π, π′[−π](m, n) ≡ π′−πm|π′−
πm+1| · · · |π′ − πn (n > m, the shortcut [π−](m, n)π′ is defined analogously),
π′[−π](m, ∞) ≡ π′ − πm[π]∗ (the shortcut [π−](m, ∞)π′ is defined analogously.

3.3 The DQL Language

The use of monoids and the comprehension syntax is common in query languages
that allow complex types [13]. For example, the query Q1 presented in Example
1 can now be expressed as:



On Querying OBO Ontologies Using a DAG Pattern Query Language 159

∪[{x|g � {substr(name, “lipid biosyn”), substr(name,“amin biosyn”)}#x :
substr(name, “biosyn”) ← GO}]

Q2 and Q3 can be expressed with queries having a similar form. For example,
Q3 can be expressed as:

∪[{z|g � (name = “cell met”)#{x, y}#z, (name = “xen met”)#z ← GO}]

This is a conjunctive query the result variable z must satisfy two patterns. Note
the x and y are implicitly existentially qualified, and by the semantics of the {. . .}
construct the same node cannot instantiate both variables. Query Q2 (and all
queries that ask “what is the relationship between nodes satisfying condition C1
and those satisfying condition C2?”) is an example of a graph-returning query.
It is simply formulated as:

∪[{x|g � x : ((name = “cell met”)#(name = “xen met”)) ← GO}]

where the scope for the result variable x is the entire subgraph satisfying the
given pattern.

Now we turn our attention from the pattern language DP to the monoid
comprehension structure in which it is embedded. Since most of the monoids
we need are standard for sets, lists, and arithmetic and if-then-else constructs,
we do not describe them in detail here. However, in addition to the collection
and the simple monoids of the comprehension calculus, graphs come with their
own monoids, each one defined on the set of graphs, and characterized by a join
operation. The most important are:

merge: puts together two graphs by identifying nodes with the same id;
gmax: given two graphs g1, g2, g = gmax(g1, g2) is the smallest graph for which

g1, g2 ⊆ g;
gmin: the largest graph contained in two graphs.

All these operators can be easily extended to take a set of graphs as input. We
omit the proof that these operations are associative, as required by the definition
of monoid. In the previous example, the query

merge{x − y|g � y : (v = 1)[−(v = 2)] ∗ −x : (v = 1)} (2)

would return as a result the graph

[8, 1]
�� �������� [7, 1]

��
[2, 1]

		������

[2, 1] [1, 1]

(3)

As we have seen in some examples above, any graph that matches a fragment
of the pattern can be assigned to a variable. This gives us the possibility of
assembling a result out of portions of the graphs in the data base. Consider the
constructive query presented as Q4 in Section 1. Abstractly, the query can be
modeled as:



160 A. Gupta and S. Santini

Given three conditions on nodes A (nodes with attribute name containing
“ met”), B, C (these conditions are empty in example Q4), remove from the
graph all the nodes which satisfy condition A; every time one of these nodes has
a parent that satisfies B and a child that satisfies C, join the parent and the
child.

Consider first this query:

merge{x − y|g � x : ([t−] ∗ B) − A − y : (C[−t]∗)} (4)

Here x represents the subgraph “up to” the B-satisfying nodes and y repre-
sents the subgraph beyond the C-satisfying nodes. The edge-construction be-
tween these nodes effectively deletes the nodes satisfying A from the output.
This query performs the required job for the portion of the graph that contains
nodes that satisfy the conditions on A, B, C. However, other portions of the
graph do not match any pattern, and hence, will be lost. The solution in this
case is to use the negation of A to match all paths that do not contain A, and
then merge the graphs thus obtained:

merge(merge{x − y|g � x : ([t−] ∗ B) − A − y : (C[−t]∗)},
merge{z|g � z : ([¬A−] ∗ ¬A)}) (5)

4 Translating into an Algebra

The algebra in which the patterns are translated can be divided in two parts: on
one hand there are the operations that deal with the values of each nodes, on the
other there are the structural operations that manipulate the graph structure.
The first part is fairly standard (e.g., textbook operations for relational systems,
[13] for object-valued data, [3] for tree-valued data and so on). In this section,
we will concentrate mainly on the second. The graph operations for a graph with
nodes of type α work on three data types: the data type of the nodes themselves
(α), that of paths of nodes (equivalent to lists of nodes, i.e. [α]), and that of
graphs (Γ (α)), with the sub-typing relations α < [α] < Γ (α).

There are three graph manipulation operators in the algebra:

path: the call path(g, n1, n2, h, k) return the set of paths between the nodes n1
and n2 in the graph g such that the length of the path is between h and k;
the typing of this function is

g : Γ (α) n1, n2 : α h, k : int
path(g, n1, n2, h, k) : {[α]} (6)

merge: the call merge(g1, g2) merges the two graphs g1 and g2 by identifying
the nodes with equal value; the operator requires that the two graphs have at
least one node that can be identified: it returns null for disconnected graphs;
its typing is

g1, g2 : Γ (α)
merge(g1, g2) : Γ (α)

(7)



On Querying OBO Ontologies Using a DAG Pattern Query Language 161

σ: the call σ(g, P ) returns the set of all nodes of the graph g that satisfy the
predicate P ; its typing is

g : Γ (α) P : α → 2
σ(g, P ) : {α} (8)

The proof of the following property is quite obvious, and we don’t report it
here:

Theorem 1. The algebra (path,merge, σ) is minimal: none of its operators can
be expressed as a combination of the others.

In addition to the graph operators there are two structural operators: apply and
chain.

apply: The operator apply[ω](A, f) applies the function f to all the elements
of the structure A, and collects the results in a structure of type ω. It typing
is:

A : ν(α) f : α → β ∪ {⊥}
apply[ω](A, f) : ω(β)

(9)

Formally, define the modified singleton for ω as

s′ω(x) =
{

sω(x) if x �= ⊥
0ω if x = ⊥ (10)

then, if A = a1 ν · · · ν an one has

apply[ω](A, f) = s′ω(f(a1)) ω · · · ω s′ω(f(an)) (11)

chain: given a set of paths S, a graph g that contains them, and two integers
h, k, chain(g, S, h, k) builds all the chains that can be built out of paths in
S taking each path between h and k times. Its typing is:

S : {[α]} g : Γ (α) h, k : int
chain[ω](g, S, h, k) : {[α]} (12)

Consider now a pattern π for which a translation is sought in the previous
algebra. Formally, the planning algorithm is a function plan(π, g, U) where π is
the pattern for which a plan is sought, g is the variable name for the input graph,
and U is the variable name for the set of environments which is the collection of
instantiated pattern variables produced at any stage of the plan. The value of the
function plan is a list of algebra functions and variable assignments. We give a
couple of simple examples of plans, before going into the details of the algorithm.
Here, as elsewhere, u1, u2, . . . , and p11, p12, . . . , pij , . . . are unique variable names
generated by the planning algorithm.

plan(z : C, g, e) =
u1 = σ(g, C);
e = apply[set](u1,

fun x => (z �→ x)
)



162 A. Gupta and S. Santini

Note that we write a list of (in this case) two elements as a;b rather than [a,b] for
ease of notation, and that we use the ML-style notation “fun x => v” for λx.v.
The value “(z �→ x)” is the environment constructor: it creates an environment
in which the only assignment is that of the value x to the variable z.
plan(z : C1 − C2, g, e) =

u1 = σ(g, C1);
u2 = σ(g, C2);
p12 = apply[set](u1

fun x1 => apply[set](u2,
fun x2 => path(x1, x2);

);
e = apply[set](u1,

fun x3 => (z �→ x3)
)

We illustrate the algorithm through an example. Consider the pattern

y : (C1[−t] ∗ C2[−t](5, 7) − x : (C3[−C4 − C5] ∗ −C6) − C7) (13)

where C1, . . . , C7 are suitable conditions on the nodes and t stands for the value
true. The first rewriting consists in isolating the portions that are assigned to a
variable (except for the variable that contains the whole pattern; this is necessary
because, in the final algorithm we will have to create not only the sub-graphs
that match the whole pattern, but also the sub-graphs that match the individual
variables). We represent this rewritten pattern as follows:

C1 [−t]∗ C2 [−t](5, 7) x − C7

C3 [−C4 − C5]∗ − C6

(14)

Then we replace all the patterns with [−t] or [t−] with the path symbols #, −,
or (a, b), which indicates a path of length between a and b:

C1 # C2 (5, 7) x − C7

C3 [−C4 − C5]∗ − C6

(15)

Then we expand the “star” elements:

C1 # C2 (5, 7) x − C7

C3 − ∗ − C6

C4 − C5

(16)

The planning algorithm operates on this representation.
First, each repeated pattern is eliminated: For each pattern [−π](n, m), the

planning algorithm is called recursively to generate a plan for x : π, where x is a
new variable, and then the function chin is used to generate the set of structures
that match the repeated pattern. In other words, we have, for a path [−π](n, m),
the fragment



On Querying OBO Ontologies Using a DAG Pattern Query Language 163

plan(x1 : π, g, u1);
u2 = apply[set](u1

);
p45 = chain(g, u2, n, m);

In the representation, the star operator is replaced by the name of the path
set that contains the graphs that satisfy the pattern:

C1 # C2 (5, 7) x − C7

C3 − p45 − C6

(17)

Note that for the purpose of the paper, the name p45 to the variable that
holds the path has been given for ease of exposition, since these are paths that
go from nodes for which condition C4 holds to nodes for which condition C5
holds. The same convention will be followed in the paper for all variable names;
the actual names used by the algorithm may, of course, vary.

Now the instructions are generated to replace each condition Ci with the set
of nodes that satisfy it

U1 = σ(g, C1)
...

U7 = σ(g, C7)

and the sets of paths that join contiguous nodes in the traversal of the structure
are generated, with the conditions established for that path:

p12 = apply[set](U1, fun x => apply[set](U2, fun y => path(x, y, 0, infty))
p23 = apply[set](U2, fun x => apply[set](U3, fun y => path(x, y, 5, 7))
p34 = apply[set](U3, fun x => apply[set](U4, fun y => path(x, y, 1, 1))
p56 = apply[set](U5, fun x => apply[set](U6, fun y => path(x, y, 1, 1))
p67 = apply[set](U6, fun x => apply[set](U7, fun y => path(x, y, 1, 1))

The data structure is updated by eliminating the node sets and replacing each
path symbol with the set of paths that implement it:

p12 ∼ p23 ∼ x ∼ p67

p34 ∼ p45 ∼ p56

(18)

The next step of the algorithm is a traversal of this structure where, for
each pij a loop is generated to chain (denoted by the symbol ∼) every path in
it with the paths of the following set pjk. In addition, the paths that depend
on a variable are joined separately, and environments are created in which the
paths are assigned to the variable. The path corresponding to each variable is
expanded, going from the variables deeper in the structure towards the top. In
this case there is only one variable, so there will be a single expansion:

fun x2 => u1(x2) (Transform the set of environments into
a set of graphs)



164 A. Gupta and S. Santini

p36 = apply[set](p34, fun x34 =>
apply[set](p45, fun x45 =>

apply[set](p56, fun x56 => merge(x34, merge(x45, x56)))
)

)

The structure is then updated as follows:

p12 ∼ p23 ∼ p36 ∼ p67 (19)

and an entry is made in a variable table to associate the variable x with the set
p36. The operation is repeated until the complete structure has been eliminated.
In this case there will be only one more generation:

p17 = apply[set](p12, fun x12 =>
apply[set](p23, fun x23 =>

apply[set](p36, fun x36 =>
apply[set](p67, fun x67 => merge(x12, merge(x23, merge(x36, x67))))

)
)

)

Now all the structures that are necessary to contain the result are contained in
the p variables: the final step is the construction of the set of environments; the
apply functions loop over all the structure sets associated to output variables x
and y:

U = apply[set](p17, fun x17 =>
apply[set](p36, fun x36 => (x �→ x36) ⊕ (y �→ x17)

);

The ⊕ operator creates the tuples of all x, y pairs that satisfy the plan.
The fundamental correctness result for the algorithm is the following:

Theorem 2. Let π be a pattern in DP−v the variable-free fragment of DP ,
g a graph, and U the set of environments created by the execution of the plan
plan(x : π, g, U), with U = {(x �→ qi)} then:

i) qi ⊆ g;
ii) qi |= π.

The proof, not formally presented here, is conceptually very simple: it is based
on the fact that all the paths that are generated are between nodes that satisfy
the corresponding end-path conditions and therefore each path corresponds to
a fragment of the pattern. The semantics of the chain operator guarantees that
this is true for repeated patterns as well. The way in which the sub-patterns for
variables are expanded guarantees that at the end of the plan each graph that
has to be assigned to a variable is present in one of the pij .



On Querying OBO Ontologies Using a DAG Pattern Query Language 165

5 Applying DQL to Life Science Problems

We are in the process of constructing a composite ontology for disease specific
information by combining relevant substructures from multiple different ontolo-
gies and other standard databases. A full description of this on-going work is
beyond the scope and page limit of this paper. Here we present a few illustrations
of how the features of DQL are used in the task.

ICD-10 (http://www3.who.int/icd/vol1htm2003/fr-icd.htm) is a taxon-
omy that categorizes diseases based on the system (e.g., cardiopulmonary)
they affect. The pathway ontology (http://cvs.sourceforge.net/viewcvs.
py/obo/obo/ontology/genomic-proteomic/pathway.obo) relates certain dis-
eases with the molecular pathways they affect. The “biological processes” frag-
ment of the Gene Ontology relates major pathways to component pathways that
constitute the major pathways. These component pathways often formally re-
fer to the molecular elements or biological processes that participate in them.
Finally, genes are functionally annotated by GO-ids to terms from the gene on-
tology. Thus it is notionally possible to start with a family of diseases per the
ICD-10 classification, ultimately relate them to the biological processes and cor-
responding genes. In our preliminary experiments to construct such connections,
we have successfully created integrated graphs for closely related neurodegener-
ative disorders (like Alzheimer’s disease, Parkinson’s disease, Lewy body disease
etc.) and identified subgraphs that are common to these diseases. In performing
these exercises, we have identified a number of “query patterns” that are very
convenient to express with the DQL:

– “Find node n1’s reachability graph in G1 until some node n2 such that n2
can be joined with some descendant of n3 of graph G2.

– “Find that subgraph of the n1’s reachability graph that reaches n2 but not
any n3 that is reachable from both n4 and n5.

– “Merge two subgraphs found by subqueries S1 and S2 such that the merged
nodes refer to the same GO-id or UMLS id”. UMLS is a large vocabulary
from the National Library of Medicine.

6 Related Work

Querying ontologies as graphs is a relatively new area of research. [12] has devel-
oped an algorithm to index DAG-structured data to make queries like transitive
closure and least common ancestor more efficient. [14] has developed an algo-
rithm to perform pattern matching queries on DAGs, and used in on the Gene
Ontology. [15,16] have developed algorithms for DAG searching. However, to our
knowledge this is the first attempt to develop a query language for DAG data,
and apply it to address an emerging area of life sciences.

In terms of query languages, we mark distinction between DQL and schema-
based graph query languages like [4,5] in that ours is a pattern language and
does not operate in the paradigm of querying against a graph-schema. On the
other hand, DQL is closely related to [13,17] on the one hand and XML query



166 A. Gupta and S. Santini

languages on the other. We view the primary contribution of this work in ex-
tending a monoid comprehension framework with a DAG-manipulating pattern
language. We contrast our language with Lorel [6], UnQL [8] and StruQL [7]
in two ways. 1) Our pattern sublanguage DP is specifically designed for DAGs
(and not for general graphs) and although not shown here, can be proven to
express serially connected minimal vertex series-parallel graphs (MVSPs) [18].
2) Our language permits more powerful construction capabilities than these lan-
guages. Lorel does not have any graph restructuring operation, UnQL’s graph
construction operations are simpler than ours. StruQL is closer to our language;
but StruQL was designed for web site construction and did not need nesting.
DQL allows naturally allows nesting through environments, where at each level
of nesting we can have selection, aggregation and construction.

7 Conclusion

In this paper, we have made the case that having the ability to query a repository
of ontologies will provide a useful tool to enable new types of analysis that were
not possible hitherto. To this end, we have presented the DQL query language
and the DAG pattern definition sublanguage DP , a corresponding algebra, and
a trace of the query planning process. In this paper, we have taken the narrow
view that ontologies are merely DAGs and adopt a closed world assumption.
The semantic aspect of ontologies that leads to knowledge representation and
logical inference problems have been ignored. This allows us to focus on the
formulation of structural queries. Even with structural queries alone, interesting
life science problems can be addressed. We have not covered systems design and
query evaluation algorithms in this paper.

References

1. Consens, M.P.: Graphlog: Real life recursive queries using graphs. Master’s thesis,
Dept. of Computer Science, University of Toronto (1989)

2. Agrawal, R., Jagadish, H.V.: Direct algorithms for computing the transitive closure
of database relations. In: Proc. 13th Int. Conf. on VLDB. (1987) 255–266

3. Subramanian, B., Zdonik, S.B., Leung, T.W., Vandenberg, S.L.: Ordered types in
the aqua data model. In: Proc. of the 4th Int. Workshop on Database Programming
Languages (DBPL), London, UK, Springer-Verlag (1994) 115–135

4. Gyssens, M., Paredaens, J., den Bussche, J.V., van Gucht, D.: A graph-oriented
object database model. IEEE Transactions on Knowledge and Data Engineering 666
(1994) 572–586

5. Poulovassilis, A., Levene, M.: A nested-graph model for the representation and
manipulation of complex objects. ACM Trans. Inf. Syst. 121212 (1994) 35–68

6. McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: a database
management system for semistructured data. SIGMOD Rec. 262626 (1997) 54–66

7. Fernandez, M.F., Florescu, D., Levy, A.Y., Suciu, D.: Declarative specification of
web sites with strudel. VLDB Journal 999 (2000) 38–55

8. Buneman, P., Fernandez, M., Suciu, D.: Unql: a query language and algebra for
semistructured data based on structural recursion. The VLDB Journal 999 (2000)
76–110



On Querying OBO Ontologies Using a DAG Pattern Query Language 167

9. Seaborne, A.: SPARQL query language for RDF. W3C Working Draft 21 (2005)
10. Zimnyi, E., dit Gabouje, S.S.: Semantic visualization of biochemical databases.

In: Semantics of a Networked World: Semantics for Grid Databases, LNCS 3226.
(2004)

11. Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases.
In: Proc. ACM SIGMOD International Conference on Management of Data, New
York, NY, USA, ACM Press (2005) 766–777

12. Tri”sl, S., Leser, U.: Querying ontologies in relational database systems. In: DILS
’05: Proc. 2nd International Conference on Data Integration in Life Sciences. (2005)

13. Fegaras, L., Maier, D.: Towards an effective calculus for object query languages.
In: ACM SIGMOD International Conference on Management of Data, San Jose,
CA, ACM (1995) 47–58

14. Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pattern matching
on dags. In: Proc. 31st Int. Conf. on Very Large Databases (VLDB), Stockholm.
(2005) 493–504

15. Vagena, Z., Moro, M.M., Tsotras, V.J.: Twig query processing over graph-
structured xml data. In: WebDB ’04: Proc. 7th International Workshop on the
Web and Databases. (2004) 43–48

16. Wang, H., He, H., Yang, J., Yu, P., Yu, J.X.: Dual labeling: Answering graph reach-
ability queries in constant time. In: ICDE ’06: Proc. 22nd International Conference
on Data Engineering. (2006 (to appear))

17. Fegaras, L., Elmasri, R.: Query engines for web-accessible xml data. In: Proceed-
ings of the 27th Int. Conf. on Very Large Data Bases (VLDB), San Francisco, CA,
USA, Morgan Kaufmann Publishers Inc. (2001) 251–260

18. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications.
Springer-Verlag, London (2001)



 

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 168 – 184, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Using Term Lists and Inverted Files to Improve 
Search Speed for Metabolic Pathway Databases 

Greeshma Neglur1, Robert L. Grossman2, Natalia Maltsev3, and Clement Yu4 

1 Laboratory for Advanced Computing, 
University of Illinois at Chicago, Chicago, IL 60607, USA 

neglur@lac.uic.edu 
2 Laboratory for Advanced Computing, 

University of Illinois at Chicago, Chicago, IL 60607, USA 
grossman@uic.edu 

3 Math and Computer Science Division,  
Argonne National Laboratory, Argonne, IL 60439, USA 

maltsev@mcs.anl.gov 
4 Department of Computer Science, 

University of Illinois at Chicago, Chicago, IL 60607, USA 
yu@cs.uic.edu 

Abstract. This paper describes a technique for efficiently searching metabolic 
pathways similar to a given query pathway, from a pathway database. 
Metabolic pathways can be converted into labeled directed graphs where the 
nodes represent chemical compounds.  Similarity between two graphs can be 
computed using a metric based on Maximal Common Subgraph (MCS).  By 
maintaining an inverted file that indexes all pathways in a database on their 
edges, our algorithm finds and ranks all pathways similar to the user input 
query pathway in time, which is linear in the total number of occurrences of the 
edges in common with the query in the entire database. 

1   Introduction 

Understanding of the complex architecture of metabolic networks provides insights 
into the fundamental design principles underlying the structure and function of living 
organisms. Common ancestry leads to the similarity of many molecular functions 
observed in all domains of life (Eukaryotes, Prokaryotes and Archaeabacteria). 
However, differences in organisms’ physiology and lifestyle result in divergent 
evolution and emergence of variants of metabolic organization and phenotypic 
features. Large amount of metabolic and proteomic data available in public databases 
now allows for systematic exploration of adaptive mechanisms that led to the 
diversification of biological systems and the emergence of metabolic pathways 
characteristic of particular taxonomic or phenotypic groups of organisms. Such 
evolutionary and comparative analysis of metabolic pathways represents one of the 
essential problems in life sciences and is essential for progress in medicine, 
biotechnology and bioremediation. Metabolic pathways corresponding to various 
metabolic processes in an organism may be represented as a labeled directed graph.  



 Using Term Lists and Inverted Files to Improve Search Speed 169 

 

The basic elements of metabolic pathways are chemical reactions that include 
compounds (e.g., substrates, products) and enzymes. Hence, computing similarity 
between pathways involves matching the constituent reactions (that include substrates 
and enzymes) and the connectivity between them. Brute force methods of matching 
the structures of substrates, enzymes and the pathway itself involve graph 
isomorphism tests at three levels and turn out to be computationally very expensive. 
The problem is further complicated if we are trying to query a database consisting of 
thousands of pathways with an average pathway size of 20+ nodes. Hence, efficient 
techniques for querying pathway databases are essential. 

Our technique is able to search and retrieve pathways from a database similar to a 
query pathway in time linear in the total number of occurrences of the pathway edges 
that are in common with the query in the entire database.   We do this by employing a 
simple indexing technique that uses terms defined from pathway edges and inverted 
files containing these terms.  

2   Related Work 

Many metabolic pathway similarity computing algorithms [8, 9] are based on 
abstracting pathways as enzyme graphs, i.e., directed labeled graphs where nodes are 
labeled with enzyme EC [12] (Enzyme Commission) numbers and a directed edge 
from one node to another implies that the product of the former node is the substrate 
of the latter. EC numbers provide a hierarchical classification of enzymes based on 
the reactions they catalyze. The classification tree consists of 4 levels with a root. 
Each enzyme is assigned a string consisting of 4 numbers, each of which corresponds 
to a level, for example: 1.2.3.4. In [8] the algorithm takes as input a sequence of EC 
numbers representing the enzyme graphs, aligns one sequence to another and attempts 
to find all EC numbers with the same 4-level hierarchical numbers, scores the 
similarities and cuts the sequences by removing the identical EC numbers and each 
pair of sub-sequences is initialized to begin a new round of 3-level hierarchical EC 
number match and so on. Another polynomial time algorithm described in [9] uses 
Approximate Labeled Subgraph Homeomorphism. A disadvantage of the enzyme 
graph representation is that it does not incorporate the similarity verification (i.e., in 
terms of structural similarity or chemical formula/sequence similarity) of substrates 
and products1 in the pathway graphs.  

Another technique [11] overcomes this disadvantage by combining sequence 
information of substrates and enzymes with graph topology of the underlying 
pathway. Several algorithms that efficiently perform pairwise pathway comparison 
are known [8, 9, 11, 17, 19]. One of the popular techniques outlined in [18] is called 
PathBLAST, which performs pairwise protein-protein interaction network alignment 
to detect linear paths and clusters [19] that are conserved between different species. 
This approach incorporates a refined probabilistic model for protein interaction data 
and also includes an automatic system for laying out and visualizing the resulting 
conserved subnetworks. This method is useful in evolutionary analysis by comparing 
the same pathway from different organisms, but may not scale efficiently to search 
                                                           
1 Products in a pathway are chemical compounds. 



170 G. Neglur et al. 

 

large databases as it performs pair wise comparison of the pathways and does not 
describe any graph indexing techniques. 

The problem of graph indexing is a critical problem in the field of computational 
biology. Several efficient graph indexing techniques [20, 21, 22, 23, and 24] for semi 
structured/XML databases and complex graph databases have been proposed. 
DataGuide [20] describes efficient index techniques for path expressions and Apex 
[21] considers the adaptivity of index structure to fit the query load. Another popular 
XML indexing technique called HOPI [22] provides support for path expression 
search with wildcards. However, these techniques are optimal and more suitable for 
path expressions and tree-structured data than for arbitrary graph queries.  

There has been a variety of prior work that has used paths to index graphs, 
including Shasha et al. [23] and the Daylight System [25].  More recently, Han et. al. 
[24] have used labels attached to frequent subgraphs to index graphs. 

3   Background 

Definition. A metabolic pathway is a series of 2 or more interconnected enzyme-
mediated (or spontaneous) chemical reactions that take place in a cell. A chemical 
reaction consists of one or more substrates (chemical compounds) transforming into 
one or more products (chemical compounds) via an enzyme (represented with an 
Enzyme Commission Number or ECN). The basic structure of a bio-chemical 
pathway is shown in Figure 1. 

 

Substrate Product/
Substrate

Enzyme-1

side substrate side product  

Fig. 1. Basic structure of metabolic pathway 

Based on their functionality, pathways are classified into the following: 

1. Metabolic pathways: consist of a series of chemical reactions occurring in an 
organism for energy production, synthesis of carbohydrates, etc. For example, 
photosynthesis. 

2. Signaling pathways: consists of chemical reactions for information transmission 
and processing. 

3. Protein Interaction networks: used to record pairs of proteins, which are 
experimentally observed to interact with each other. 

4. Gene regulatory networks: orchestrate the level of expression for each gene in the 
genome by controlling whether and how vigorously that gene will be transcribed 
into RNA. 

We will be chiefly dealing with metabolic pathways as most metabolic pathways in 
different organisms have been identified and a large collection of them can be found 
in various pathway databases. Also, the concepts developed here can be extended to 
 



 Using Term Lists and Inverted Files to Improve Search Speed 171 

 

index protein interaction networks, signaling pathways, gene regulatory networks and 
other directed or undirected graphs. 

Metabolic Pathway Databases. There are several metabolic pathway databases [1], 
each of which stores thousands of pathways for different organisms. Differences 
between the databases are in their source of information, classification of pathways 
for organisms, level of detail, graph representations, etc. Metabolic pathway databases 
include: KEGG [2], ENZYME [3], BRENDA [4] and EcoCyc/BioCyc/MetaCyc [5]. 

In this paper, we primarily focus on MetaCyc. The MetaCyc database consists of 
pathways, reactions, enzymes, substrates and citation to source. It also contains 
Super-pathways: i.e., groups of pathways linked by common substrates. Pathways are 
represented as directed graphs with nodes for each enzyme and substrate; graph edges 
connect substrates. The BioCyc database also has a web-interface to retrieve 
pathways, given a single chemical compound name, Enzyme name or EC number or 
pathway name. 

4   Terms and Definitions 

4.1   Uniquely Labeled Graph 

By a uniquely labeled directed graph, we mean a directed graph in which there is a 
unique label attached to each node in the graph.  Figure 2 is a uniquely labeled 
directed graph.  As we will see below in Section 4.5.2, there are a number of reasons 
that it is difficult to associate uniquely labeled graphs with pathways. 

 

A B

X1

C

X1

 

Fig. 2. Uniquely labeled directed graph 
 

4.2    From Directed to Undirected Graphs  

Graphs representing metabolic pathways are generally directed. To compute the 
common subgraph between the query and the pathways in the database, we first 
enumerate all the directed edges in common between the query and each of the 
indexed pathways. Next we form the corresponding undirected graph from the set of 
common edges for each, as in Figure 3.  Hence, we are not losing the directionality 
information, it is already being considered in the index.  

A directed graph is said to be weakly connected if its undirected version is 
connected, i.e., there is a path from each vertex to any other vertex in its undirected 
version.  

 



172 G. Neglur et al. 

 

 

A
X1

F

CB
X5

X2 Transform 
into 
undirected 
version

A

X1

F

CB

X5

X2

Adjacency List
{A: [X1: B, X2: F],
  B:  [X5: C],
  }

Transform 
into 
undirected 
version

Adjacency List
{A: [X1: B, X2: F],
  B: [X1: A, X5: C],
  C: [X5: B],
  F: [X2: A]
  } 

 

Fig. 3. Weakly connected directed graph 

4.3   Common Subgraph 

A common subgraph between two directed graphs Q and P represents a subgraph in 
common between Q and P. For example, the common subgraphs between P and Q in 
Figure 4 are {A:X1:B, A:X2:F} and {C:X3:D}.  

We compute the common subgraphs between two pathways by first enumerating 
all directed edges in common between them. Second, to obtain the component 
subgraphs in common from this set of edges, we ignore the directions of these edges 
(as the directions have already been considered in the previous step) and compute the 
connected components formed. Each of these connected components is a common 
subgraph between the two pathways.  For example: The set of edges (A:X1:B, 
A:X2:F, C:X3:D) in common between P and Q form two common subgraphs 
{A:X1:B, A:X2:F} and {C:X3:D}. 

4.4   Maximal Common Subgraph  

A common subgraph that has the maximum number of edges is called a Maximal 
Common Subgraph. In Figure 4, out of the two subgraphs in common {A:X1:B, 
A:X2:F} is maximal. 

4.5   Metabolic Pathways as Uniquely Labeled Directed Graphs 

4.5.1   Motivation 
Metabolic pathways are representations of reactions.  In general, there is no unique 
way to describe a reaction.  For example, different researchers may expand or contract 
the definition of a reaction by incorporating more compounds or fewer compounds 



 Using Term Lists and Inverted Files to Improve Search Speed 173 

 

respectively. For this reason, graphs that abstract reactions are not unique. In contrast, 
graphs that represent chemical structures are unique.  Even so, by coding pathways as 
uniquely labeled graphs, we can speed up many common pathway queries, which is 
the point of view we take in this paper. 
 

Graph Q:

Graph P: 

A

X1

F

CB

X4

X2

D

X3

A

X1

F

CB

X7

X2

D

X3

 

Fig. 4. The common subgraphs between graph P and graph Q are {A:X1:B, A:X2:F} and 
{C:X3:D} 

4.5.2   The Labeled Graph Associated with a Pathway 
We associate a labeled graph to a pathway as follows: 

1) The nodes of the graph are the chemical compounds in the pathway. 
2) Two nodes are connected by an edge when there is a chemical reaction in the 

pathway transforming one node into the other. 
3) The edge is labeled with the enzyme using the EC number of the enzyme. 

For the study described in this paper, we perform the following two additional 
steps: 

4) We label the nodes with Canonical SMILES string of the chemical 
compound associated with the node.  The Canonical SMILES string can be 
obtained from the PubChem database [6]. 

5) We identify all nodes whose labels are the same.  That is, if 1) – 4) above 
define the graph G, then the graph associated with the pathway is the graph 
G′ = G / ~, where ~ is the equivalence relation defined as follows: u ~ v in 
case the nodes u and v in G have the same label defined in Step 4.   



174 G. Neglur et al. 

 

Figure 5 illustrates Steps 1) – 4) above. The names of the compounds in the nodes 
have been skipped for brevity. Instead, just letters A, B, C are used to denote different 
compound names.   

Some remarks about this construction: 

1. Although Canonical SMILES are not unique [16], for the purposes of the 
work here, they are adequate. 

2. This construction ignores side substrates and side products, although these 
are easy to include by simply incorporating them into the label associated 
with an edge. 

3. Working with the quotient graph defined in Step 5) is not necessary for the 
algorithm we describe below, but simplifies the algorithm and the code a bit 
and was used in this study.  The quotient graph is uniquely labeled as defined 
above in the sense that the labels of the graph are all unique.  We emphasize 
though that the algorithm and approach do not require the use of uniquely 
labeled graphs. 

4. Some pathways in MetaCyc could not be converted into a labeled graph 
using these steps since either the Canonical SMILES strings for some 
compounds were not available from PubChem or the complete 4-digit EC 
numbers were not available from MetaCyc. However there are relatively few 
pathways like this.  We note that the methods in [15] could be used to assign 
unique labels for chemical compounds.   

4.6   Concept of a Term for a Pathway 

A term is an ordered-triplet consisting of a substrate, enzyme and product, which we 
denote as follows:  

substrate:enzyme:product. (term) 

Note that a term represents an edge in the uniquely labeled graph of the pathway, or 
one or more edges in the labeled graph associated with a pathway.  Because of this, 
we use “term” and “edge” synonymously below.  For example: C=C1CN:2.4.8.1: 
C2C3=SC is a term (refer to the above pathway in Figure 5).  Terms will be used 
below to build an index structure, which is an inverted file. 

4.7   Pathway Vector  

Given a labeled graph and an ordering of terms (for example, a lexigraphical 
ordering), one can associate a vector with the pathway.  The component of the vector 
associated with a term is simply the number of times the term occurs in the graph.  
Note that if the graph is uniquely labeled, then the pathway vector is a binary vector 
in the sense that each component is either 0 or 1.   

As we will see below, treating pathways as vectors of terms and using inverted 
files provides a natural index.  For the pathways in Figure 4 the vectors are as below, 
the top row represents the terms of the pathway graphs. 
 



 Using Term Lists and Inverted Files to Improve Search Speed 175 

 

   A:X1:B, A:X2:F , B:X4:C, B:X7:C, C:X3:D
Q(   1      ,     1       ,       1     ,     0      ,     1      )  
   A:X1:B, A:X2:F , B:X4:C, B:X7:C, C:X3:D
P(   1      ,     1       ,       0     ,     1      ,     1      ) 

Substrate 
Csubstrate 

A 2.4.8.1

Substrate 
B 3.2.1.6

CC=CN=PC=C1CN

2.4.8.1

C2C3=SC

3.2.1.6
 

Fig. 5. Transformation of a pathway into uniquely labeled directed graph representation 

4.8   Pathway Adjacency List 

To capture the structure of the pathway, we can represent it using an adjacency list, which 
for each node ‘p’ in an undirected graph, stores a list consisting of nodes that are incident 
at ‘p’, together with the label of the corresponding edges. For the undirected pathway in 
Figure 3 the adjacency list is to the left in Figure 6. The adjacency list for the node with 
label ‘C’ consists of a single adjacent node ‘B’ via an edge with label ‘X5’.  The adjacency 
list representation can be converted into a vector and vice versa. Similarly, for a directed 
graph the adjacency list for each node ‘p’ is a set of nodes that are pointed to by ‘p’. For 
example, the adjacency list for the directed pathway in Figure 3 is to the right in Figure 6. 

Adjacency List
{A : [ X1:B,  X2:F],
  B : [ X1:A, X5:C],
  C : [X5:B],
  F : [X2:A]
  } 

Adjacency List
{A : [ X1:B,  X2:F],
  B :  [ X5:C],
  }

 
Fig. 6. Left: Adjacency list for undirected graph in Fig 3. Right: Adjacency list for the directed 
graph in Fig 3. 

4.9   Similarity Functions 

4.9.1   Cosine Similarity Function 
Given two pathway vectors ‘Q’ and ‘G’ the measure of cosine similarity between 
them can be computed as in Equation 1. The cosine similarity is a measure of the 
number of terms/edges in common between the pathway vector ‘Q’ and vector ‘G’ 
[Salton and McGrill 1983]. 
 



176 G. Neglur et al. 

 

                               n 
        F(Q,G) =        qiGi                             …………………………………………   (1)    
                               i                                        

                                 qi 
2   Gi 

2     

where Q = (q1, q2,……,qn) and G = (G1, G2,……,Gn) 

4.9.2   Global Similarity Measure Based on MCS 
Given two pathway graphs ‘Q’ and ‘G’ the measure of similarity between them based 
on MCS can be computed as in Equation 2. This is based on the distance metric 
described in [7], which states that the distance metric d(Q, G) = 1 - Sim(Q, G) is a 
metric, i.e., for any graphs G1, G2 and G3 the following properties hold true: 

1. 0  d(G1, G2)  1, 
2. d(G1, G2) = 0  G1 and G2 are isomorphic to each other, 
3. d(G1, G2) = d(G2, G1), 
4. d(G1, G3)  d(G1, G2) + d(G2, G3). 

       Sim (Q, G) =     |mcs(Q, G)|               ………………………………………..       (2) 
                            
                                 Max(|Q| , |G| )  

Where mcs(Q, G) is the Maximal Common Subgraph between Q and G and |G| is the 
size of the graph in terms of number of edges (E) in the graph.  

5   Algorithms 

The following sections describe in detail the algorithms employed for preprocessing 
the database, building an index structure for the database, and for searching and 
displaying pathways similar to the user input query pathway in descending order of 
similarity. 

5.1   Database Preprocessing 

The database preprocessing consists of the following two steps:      

• Transforming the pathways stored in the database to a labeled graph. 
• Building of the index structure for the database, which indexes each term or 

edge consisting of a triplet of the form substrate:enzyme:product 

5.2   Database Index Structure 

We construct an indexed structure for the database that indexes pathways based on 
terms/edges present in them. Hence for each term/edge in the index structure, there 
will be a list of pathways that contain that term/edge, i.e., a list of pathways that 
contain the corresponding edge. Each pathway has a unique identifier that is stored in 
the index structure. The size of the pathway is computed and stored as well. An 
example is given in Figure 7. 

 



 Using Term Lists and Inverted Files to Improve Search Speed 177 

 

Pathway-1 Pathway-4

Pathway-3

CC=C=CN:2.1.4.8:C=C1N

CC=C=CN:2.1.4.11:C=C2

 

Fig. 7.  Example index structure 

5.3   Single Pass Algorithm for Indexing the Database 

Here is the pseudo-code of the single pass algorithm for generating an index structure 
for a database of pathways to facilitate pathway queries: 

//database index structure indexes terms/edges and stores all  
//the pathways that have the term as a list pointed to by the  
//term. 
Define Database_Index_Structure as a hash table 

 
//temporary data structure which records the unique canonical 
//string for a given compound name obtained from the PubChem 
//database. This facilitates a quick local check to see if a 
//unique string for the compound was obtained from    
//PubChem previously and reduces the number of calls to the 
//PubChem database.   
Define Compound_Names as a hash table 

 
For each pathway in the DB do 

{  
Pathway_Vector = ( ) 
Begin a Breadth First Traversal 

For each edge(substrate:enzyme:product) encountered in 
the pathway traversal do 
{ 

Term = ‘’ 
   For each substrate in the edge do   
   If compound does not have unique string in   
         Compound_Names Then { 

Connect to PubChem, obtain unique string 
                 Insert entry into Compound_Names 
    }   
    Append substrate unique string to the Term 
    Append the enzyme EC number to the Term 
    Append product unique string to the Term 

Insert term into Database_Index_Structure along  
          with Pathway id 



178 G. Neglur et al. 

 

    Append term to Pathway_Vector 
    } 
   }  
   Return Database_Index_Structure and Compound_Names 

5.4   Search Engine Functionality 

5.4.1  
Given a query pathway; for each of the substrates/products in the query retrieve the 
SMILES string from the PubChem database. 

1.2.1.11

2.7.2.4

L-asparate L-4-aspartyl 
phosphate

L-aspartate 
semialdehyde

 

Fig. 8. Example user query to be retrieved from MetaCyc database 

For the query in Figure 8: We submit the names L-asparate, L-4-aspartyl phosphate 
and L-asparate semialdehyde to PubChem to obtain strings: 

(1) L-asparate – C(C(C(=O)O)N)C(=O)O 
(2) L-4-aspartyl phosphate – C(C(C(=O)O)N)C(=O)OP(=O)(O)O 
(3) L-asparate semialdehyde - C(C=O)C(C(=O)O)N 

5.4.2 
Submit the new query graph represented in the form of a labeled graph (as shown in 
Figure 9 for the query graph) to the search engine, which will retrieve all the similar 
pathway graphs from the given database, e.g., MetaCyc, and display them in 
descending order of the similarity measure calculated using a similarity metric chosen 
by the user, i.e., either based on maximal common subgraphs or cosine similarity. 
Details of the algorithm are given in the next section. 

2.7.2.4  

C(C(C(=O)O)N)C(=O)
O

C(C(C(=O)O)N)C(=O)OP(=
O)(O)O

C(C=O)C(C(=O)O)N

1.2.1.11

 

Fig. 9. Labeled graph representation for graph in Fig. 8 



 Using Term Lists and Inverted Files to Improve Search Speed 179 

 

 

Q = { A:5.3.1.9:B, B:10.10.10.10:C, C:2.7.2.3:D, D:5.4.2.1:E, E:4.2.1.11:F, F:2.7.1.40:G }

P1 = { A:5.3.1.9:B, B:2.7.1.11:H, H:4.1.2.13:I, H:4.1.2.13:J, J:5.3.1.1:I, I:1.2.1.12:C, 
C:2.7.2.3:D, D:5.4.2.1:E, E:4.2.1.11:F , F:2.7.1.40:G }
P2 = { K:2.7.1.147:A, A:5.3.1.9:B, B:2.7.1.146:H, H:4.1.2.13:I, H:4.1.2.13:J, I:X:D, 
J:5.3.1.1:I, G:2.6.1.2:L, G:1.2.7.1:M ,  M:6.2.1.13:N, D:5.4.2.1:E, E:4.2.1.11:F, 
F:2.7.1.40:G }

 

Fig. 10. Example query graph ‘Q’ and example database with two pathways ‘P1’ and ‘P2’ 

5.5   Algorithm for Computing Similarity Based on MCS and Cosine Similarity 

The words edges and terms are used synonymously. 

Overview. The important tasks performed by the algorithm are as follows: 

Step 1.1 For each edge given in the query pathway; find all the database pathways 
that have the edge. 

Step 1.2 For each pathway obtained in Step 1.1; find all the common edges between 
the pathway and the query graph. 

Step 1.3 Represent the common edges in the form of adjacency lists (refer to section 
4.8 for details) for the undirected graph (this is required to obtain the maximal 
common subgraph defined as a connected component). The common edges for the 
graphs ‘P1’ and ‘P2’ of Figure 10 are shown in Figure 11.    

 

    P1 = { A:5.3.1.9:B, C:2.7.2.3:D, D:5.4.2.1:E, E:4.2.1.11:F,  F:2.7.1.40:G} = 5 common      
             edges 
    P2 = { A:5.3.1.9:B, D:5.4.2.1:E, E:4.2.1.11:F , F:2.7.1.40:G} = 4 common edges

 
 

 

Step 2.  For each pathway with common edges found above, perform a simple Depth 
First Traversal (DFT) on the undirected graph obtained in Step 1. The connected 
components (trees) obtained in the Depth First Traversal forest will represent the 
common subgraphs between Q and the pathway. The common subgraphs/connected 
components obtained from Figure 11 are shown in Figure 12. 

Step 3.  From the above computed common subgraphs, find a maximal subgraph and 
use it to compute the similarity measure based on Eq 2 (MCS similarity). Use the set 
of common edges to compute the similarity measure based on Eq 1 (Cosine 

Fig. 11. Common edges after Step 1 for the example in Fig 10 



180 G. Neglur et al. 

 

Similarity). Rank the pathways in descending order of similarity based on the 
similarity measure chosen by the user. 

 

Fig. 12.  Common subgraphs found for ‘P1’ and ‘P2’ 

Time Complexity Analysis for the Steps Described Above: 

Step 1.1: For the i’th edge in the query graph, let ni be the number of pathways that  
have the edge. Using the index associated with this edge, all pathways having this 
edge can be obtained. Thus, all edges in common between the database pathways and 
the query can be obtained in time O( (sum over all edges in the query) ni) = O(n), 
where n is the number of such common edges. 

Step 1.2: Since the index associated with each edge has the IDs of the pathways 
having the edge, all edges the pathway has in common with the query can be 
assembled in linear time. Thus, this sub-step also takes O(n) time. 

Step 1.3: This is the same as Step 1.2, except that the representation of the edges is in 
the form of adjacency lists. This takes O(n) time. 

Step 2:  The depth-first algorithm to find all connected components based on 
adjacency lists can be obtained in linear time, i.e., O(n) [14]. 

Step 3:  During the computation of the connected components in Step 2, we keep 
track of the sizes of the connected components for each database pathway that has 
common edges with the query. Every time that an edge is added to a connected 
component, its size is increased by 1. Thus, the time to compute the sizes of the 
connected components is bounded by O(n).  

 



 Using Term Lists and Inverted Files to Improve Search Speed 181 

 

The sizes of the database pathways are pre-computed in Algorithm 4.3 and stored. 
Thus, the time to compute the two similarity measures is bounded by O(n + Q) = 
O(n), assuming that each edge in the query Q occurs in some database pathway. 

Hence, the search time/retrieval time given a query pathway graph is linear in the 
total number of edges (n) in common with the query in the entire database.  

6   Experimental Results 

We performed some preliminary experimental studies and verified that the 
performance is approximately linear. We have implemented the algorithms in python 
and have provided a PHP [13] web interface to the search engine that can be accessed 
at [10].  We ported the search engine onto a web server on an Intel® Xeon™ CPU 
2.4GHz and 1GB RAM. We analyzed pathway query graphs of different sizes, and 
plotted the algorithm's performance as shown in Figure 13 for the MetaCyc database. 
 

No. of 
input 
edges 

Total No. of 
common edges 
in the database
(X axis)

No. of 
output 
pathways 

Retrieval 
time in secs 
(Y axis)

1 2 2 0.00075
1 6 6 0.00088
1 13 13 0.00124
3 28 16 0.00181
3 40 17 0.00241
6 55 21 0.00332
7 61 26 0.00372
8 66 28 0.0041
9 72 34 0.0046

10 84 27 0.0057

 

Fig. 13. Bottom: X-axis: total no. of edges in common with the query in the entire database,  
Y-axis: retrieval time in secs. Top: tabular description of performance. 



182 G. Neglur et al. 

 

The Metacyc dataset we used has 547 pathways, 4955 enzymatic reactions, 1940 
enzymes and 3551 chemical compounds. The total number of unique edges in the 
database that are computed and stored in the index is 2294. The total number of edges 
in the entire database is 41561 and the average pathway size is 78 edges. The 
maximum length of the list of pathways corresponding to an edge in the index is 41.  

The time to compute the index was 11.77 seconds. Since this was a very small 
database the queries of varying sizes were selected at random to target different sets 
of pathways in the database. Also, queries consisting of most occurring edges and 
least occurring edges were formed.  

We are working on extending our algorithm to larger databases such as KEGG [2] 
and EMP[26] to test its scalability and performance. We are also currently working on 
performing a comparative analysis of our algorithm with other popular graph indexing 
techniques like GraphGrep [23] or GIndex [24]. 

7   Summary and Conclusion 

Finding similar pathways has important applications in drug discovery and in the study 
of evolution.  For this reason, it is important to develop efficient techniques to compute 
pathway similarity. In this paper, we have introduced an algorithm for retrieving 
similar pathways that uses an inverted file for the pathway database and indexes all the 
pathways in the database based on their edges.  In this way, we are able to find and 
rank all the pathways similar to the user input query pathway in linear time.  

We have implemented this algorithm using data from the MetaCyc database and 
provided a web interface. We have also performed a preliminary experimental 
analysis showing that the queries are indeed linear as expected.  

The study in this paper assumed that the graph associated with a pathway was 
uniquely labeled.  This is easily accomplished by working with the quotient graph G,′ 
defined above, instead of the graph G. Essentially the same algorithm described in 
Section 4 works for the graph G – the only difference is that the components of the 
pathway vector are not restricted to 0 or 1, but can be any positive integer. In practice, 
working with the quotient graph G′ is not an important restriction and speeds up the 
computations. We are currently studying the trade-offs involved when using the graph 
G instead of the graph G′. 

We are also currently integrating additional pathway databases so that similarity 
searching can be done across multiple distributed pathway databases. We are also 
studying the impact of other graph properties such as edge to node ratios, number of 
cliques, etc. on the query performance. 

References 

1. Bader GD, Cary MP, Sander C. Pathguide: a pathway resource list. Nucleic Acids Res. 
2006 Jan 1;34(Database issue):D504-6. 

2. KEGG - Kanehisa, M., Goto, S., Hattori, M.,Aoki-Kinoshita, K.F., Itoh, M., Kawashima, 
S.,Katayama, T., Araki, M., and Hirakawa, M.; From genomics to chemical genomics: 
new developments in KEGG. Nucleic Acids Res. 34, D354-357 (2006). 

3. Bairoch A. The ENZYME database in 2000 Nucleic Acids Res 28:304-305(2000).  



 Using Term Lists and Inverted Files to Improve Search Speed 183 

 

4. BRENDA, enzyme data and metabolic information   Schomburg, I., Chang, A., 
Schomburg, D.   Nucleic Acids Res. (2002) 30, 7-9  

5. MetaCyc - Cynthia J. Krieger, Peifen Zhang, Lukas A. Mueller, Alfred Wang, Suzanne 
Paley, Martha Arnaud, John Pick, Seung Y. Rhee, and Peter D. Karp (2004) MetaCyc: A 
Multiorganism Database of Metabolic Pathways and Enzymes Nucleic Acids Research, 
32(1):D438-42. 

6. PubChem database : http://pubchem.ncbi.nlm.nih.gov/ 
7. Horst Bunke , Kim Shearer, A graph distance metric based on the maximal common 

subgraph, Pattern Recognition Letters, v.19 n.3-4, p.255-259, March 1998  
8. Ming Chen, Ralf Hofestaedt, PathAligner: Metabolic Pathway Retrieval and Alignment, 

Applied Bioinformatics, 2004, 3(4): 241-252.  
9. Ron Pinter et al. - Tree-based Comparison of Metabolic Pathways 

10. Metabolic Pathway Search Engine - http://data.dataspaceweb.net/pathways/Search.php 
11. Forst CV, Schulten K. Evolution of metabolisms: a new method for the comparison of 

metabolic pathways using genomics information.. J Comput Biol. 1999 Fall-Winter;6(3-
4):343-60 

12. EC-Published in Enzyme Nomenclature 1992 [Academic Press, San Diego, California, 
ISBN 0-12-227164-5 (hardback), 0-12-227165-3 (paperback)] with Supplement 1 (1993), 
Supplement 2 (1994), Supplement 3 (1995), Supplement 4 (1997) and Supplement 5 (in 
Eur. J.Biochem. 1994, 223, 1-5; Eur. J. Biochem. 1995, 232, 1-6; Eur. J. Biochem. 1996, 
237, 1-5; Eur. J. Biochem. 1997, 250; 1-6, and Eur. J. Biochem. 1999, 264, 610-650; 
respectively) [Copyright IUBMB]. 

13. Rasmus Lerdorf, Kevin Tatroe. Programming PHP. Published: 05/04/2002 ISBN: 
1565926102 

14. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. 
Introduction to Algorithms, Second Edition. Section 22.3 Depth First Search. 

15. Robert L. Grossman, Pavan Kasturi, Donald Hamelberg, Bing Liu, An Empirical Study of 
the Universal Chemical Key Algorithm for Assigning Unique Keys to Chemical 
Compounds, Journal of Bioinformatics and Computational Biology, 2004, Volume 2, 
Number 1, 2004, pages 155-171.  

16. Greeshma Neglur, Robert L. Grossman, Bing Liu: Assigning Unique Keys to Chemical 
Compounds for Data Integration: Some Interesting Counter Examples. DILS 2005:  
145-157. 

17. Kelley, B. P., Sharan, R., Karp, R., Sittler, E. T., Root, D. E., Stockwell, B. R., and Ideker, 
T. Conserved pathways within bacteria and yeast as revealed by global protein network 
alignment. Proc Natl Acad Sci U S A 100, 11394-9 (2003). 

18. Kelley, B. P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B. R., and Ideker T. 
PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids 
Res.32(Web Server issue):W83-8. 2004. 

19. Sharan, R., Suthram, S., Kelley, R. M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, 
R. M., and Ideker, T. Conserved patterns of protein interaction in multiple species. Proc 
Natl Acad Sci U S A. 8:102(6) 1974-79 (2005). 

20. R. Goldman and J. Widom. Dataguides:enabling query formulation and optimization in 
semistructured databases. In Proceedings of VLDB, pages 436--445, 1997. 

21. C.-W. Chung, J.-K. Min, and K. Shim. Apex: an adaptive path index for XML data. In 
SIGMOD, 121--132, 2002. 

22. Ralf Schenkel, Anja Theobald, Gerhard Weikum, "Efficient Creation and Incremental 
Maintenance of the HOPI Index for Complex XML Document Collections," icde, pp. 360-
371,  21st International Conference on Data Engineering (ICDE'05),  2005. 



184 G. Neglur et al. 

 

23. D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of tree and graph 
searching. In Symposium on Principles of Database Systems, pages 39--52, 2002. 

24. X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure based approach. In 
Proceedings of SIGMOD 2004. 

25. C.A. James, D. Weininger, and J. Delany. Daylight theory manual daylight version 4.82. 
Daylight Chemical Information Systems, Inc, 2003. 

26. E. Selkov, S. Basmanova, T. Gaasterland, I. Goryanin, Y. Gretchkin, N. Maltsev,  
V. Nenashev, R. Overbeek, E. Panyushkina, L. Pronevitch, E. Selkov, Jr, and I. Yunus. 
The metabolic pathway collection from EMP: the enzymes and metabolic pathways 
database: Nucleic Acids Res. 1996 January 1; 24(1): 26–28. 



U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 185 – 194, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Arevir: A Secure Platform for Designing Personalized 
Antiretroviral Therapies Against HIV 

Kirsten Roomp1, Niko Beerenwinkel2, Tobias Sing1, Eugen Schülter3, Joachim Büch1, 
Saleta Sierra-Aragon4, Martin Däumer4, Daniel Hoffmann3, Rolf Kaiser4,  

Thomas Lengauer1, and Joachim Selbig5 

1 Max Planck Institute for Informatics, Stuhlsatzenhausweg 85,  
66123 Saarbrücken, Germany 

{roomp, tobias.sing, buech, lengauer}@mpi-sb.mpg.de 
2 Department of Mathematics, University of California, Berkeley, USA 

niko@math.berkeley.edu 
3 Center of Advanced European Studies and Research (caesar), Friedensplatz 16, 

53175 Bonn, Germany 
{eugen.schuelter, daniel.hoffmann}@caesar.de 

4 Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Köln, Germany 
saleta@arcor.de, martin.daeumer@medizin.uni-koeln.de, 

rolf.kaiser@uk-koeln.de 
5 University of Potsdam and Max Planck Institute for Molecular Plant Physiology,  

Am Mühlenberg 1, 14476 Golm-Potsdam, Germany 
selbig@mpimp-golm.mpg.de 

Abstract. Despite the availability of antiretroviral combination therapies, suc-
cess in drug treatment of HIV-infected patients is limited. One reason for ther-
apy failure is the development of drug-resistant genetic variants. In principle, 
the viral genomic sequence provides resistance information and could thus 
guide the selection of an optimal drug combination. In practice however, the 
benefit of this procedure is impaired by (1) the difficulty in inferring the clini-
cally relevant information from the genotype of the virus and (2) the restricted 
availability of this information. We have developed a secure platform for  
collaborative research aimed at optimizing anti-HIV therapies, called Arevir. A 
relational database schema was designed and implemented together with a web-
based user interface. Our system provides a basis for monitoring patients, deci-
sion-support, and computational analyses. Thus, it merges clinical, diagnostic 
and bioinformatics efforts to exploit genomic and patient therapy data in clini-
cal practice. 

1   Introduction 

1.1   Antiretroviral Therapy 

There are currently 25 licensed, antiretroviral agents (including 5 fixed-dose combina-
tions) available in industrialized countries for the treatment of HIV-infected patients. 
The majority of these drugs targets one of the two viral enzymes, the protease or the 
reverse transcriptase (RT). Additionally, a new class of drugs called entry inhibitors is 



186 K. Roomp et al. 

under development, with a subclass called fusion inhibitors. One such drug has been 
approved so far, which targets the gp41 protein located on the surface of HIV [1]. 
However, despite the introduction of combination therapy (called HAART – highly 
active antiretroviral therapy, usually consisting of three or more drugs) eradication of 
the virus from the patient’s body cannot be achieved by current regimens [2]. There-
fore, treatment strategies aim at maximal suppression of the viral load, i.e., the num-
ber of free virus particles per mL of the patient’s blood serum. Besides the strong side 
effects of the inhibitors [3], the long-term effectiveness of HAART is also limited by 
the development of drug-resistant genetic variants [4]. Consequently, HIV resistance 
testing becomes increasingly important in the management of infected patients. 

Resistance testing can be performed either by measuring viral activity in the pres-
ence or absence of a drug (phenotypic resistance testing [5]), or by scanning the viral 
genome for resistance-associated mutations (genotypic resistance testing [6]). It has 
been shown that patients can benefit from both genotypic and phenotypic testing [7]. 
Genotyping is faster and cheaper, whereas phenotypic results are easier to interpret. 
Direct sequencing produces genomic data of about 1200 base pairs of the HIV pol 
gene, which codes for protease and RT. This sequence carries the information about 
susceptibility or resistance of the patient’s virus to each of the available drugs. How-
ever, it is challenging to infer resistance from the sequence and the optimal way of in-
terpreting the genotype with respect to clinical outcome is not known. 

1.2   Public Databases and Related Work 

The HIV Sequence Database in Los Alamos provides a public repository for anno-
tated HIV sequence data and is centered on sequence analysis. The HIV Drug Resis-
tance Database in Stanford, formerly called the HIV RT/Protease Sequence Database, 
collects and analyzes sequences associated with the development of viral resistance. It 
is focused on sequences coding for the molecular targets of anti-HIV therapy. It in-
cludes drug susceptibility data and clinical histories [8]. The public website contains 
also a tool, HIVdb, for the interpretation of genotypic resistance. This system predicts 
resistance to a drug by scoring observed mutations in the drug’s target protein. Muta-
tion scores are derived manually by human experts based on reviewing links between 
mutations and resistance phenotypes described in the literature. 

Another approach to interpreting genotypic resistance tests that avoids this bias lies 
in the systematic analysis of large sets of matched genotype-phenotype pairs. Statisti-
cal and machine learning methods have been applied successfully to derive models 
that predict phenotypic resistance from the genotype [9-13]. However, the predicted 
phenotype is only a first step towards understanding the clinical impact of resistance 
mutations. Selecting an optimal drug combination has become more difficult, because 
resistance testing adds complex genomic information to the decision-making process. 
Furthermore, the growing number of available drugs implies an exponentially grow-
ing number of possible drug combinations. Extending the data mining approach to  
related sequences, therapy histories and clinical outcomes promises to identify the de-
terminants of the clinical resistance phenotype. However, this approach presumes 
large sets of curated and structured data. 

Further related work can be found at the HIV Resistance Response Database Initia-
tive (www.hivrdi.org), the Forum for Collaborative HIV Research (www.hivforum. 
org) and EuResist (www.euresist.org). 



 Arevir: A Secure Platform for Designing Personalized Antiretroviral Therapies 187 

2   The Arevir Database 

2.1   Database Rationale 

Clinical information systems can support decision-making by providing relevant and 
valid information at the right time and place [14]. These requirements are generally 
not met with systems used in the management of HIV-infected patients. Firstly, resis-
tance testing is usually performed in specialized virologic laboratories. Secondly, 
clinical data management systems – if at all existent in electronic form – are not pre-
pared to handle and interpret genotypic data. Thus, test results remain separated from 
the electronic patient record. This situation is unsatisfying not only with regard to rou-
tine clinical decision-making, but also to research on optimizing therapies by means 
of incorporating genomic data. 

 

Fig. 1. Supported information flow in the Arevir system 

We therefore made a concerted effort using the help of clinicians, virologists and 
bioinformaticians to take maximal advantage of genomic information in clinical prac-
tice. We focused on the design and implementation of a data management system that 
provides the logical and technical basis for therapy optimization. The system is used 
for monitoring patients, supporting medical decisions, augmenting the quality of re-
sistance tests and the development of new computational tools that support decision-
making (Fig. 1). Thus, it is a platform for interdisciplinary cyclic health care quality 
improvement [15]. 

Specific design goals for the system were (1) to integrate all relevant patient data, 
including sequence data resulting from resistance tests; (2) to provide secure access to 
these data for all authorized healthcare professionals involved, irrespective of their lo-
cation; (3) to support the interpretation of genotypic resistance tests and the identifica-
tion of remaining therapeutic options; and (4) to accumulate data sets of sufficient 
quantity and quality to yield computational tools for the optimization of individual 
therapies.  



188 K. Roomp et al. 

2.2   Database Design 

The development of Arevir involved the design and implementation of a relational da-
tabase accessible to all project partners across different platforms, ensuring the secu-
rity and integrity of patient data. In managing HIV-infected patients different types of 
data arise, including personal patient data, therapy histories, numerous virologic, im-
munologic and other clinical test results derived from patient samples, and sequence 
data from genotypic resistance tests. Our database schema captures these data types in 
different modules, each consisting of a few tables. The key relations between these 
modules are shown in the entity relationship diagram in Fig. 2. 

There is an important relationship between sequences and therapies via the drug 
targets, which defines a critical feature of the database. The compounds making up a 
combination therapy target specific viral proteins. In turn, DNA segments coding for 
these proteins are sequenced in order to gain information on the level of resistance 
that has been developed by the virus. Thus, given the values of clinical markers the 
data model allows for inferring the outcomes of therapy types versus mutational pat-
terns within the drug targets. Indeed, these relationships have been used to make the 
first steps towards therapy optimization (Section 3.4). 

The core database schema consists of 36 related tables that were normalized to 
third normal form. Further tables and modules are used for storing computational re-
sults such as alignments, derived protein sequences, and annotations. 

We implemented the data model in the open source relational database manage-
ment system (RDBMS), MySQL version 5.0.16. MySQL provides a client/server sys-
tem consisting of a multi-threaded SQL server and different client programs, libraries, 
and programming interfaces. MySQL was chosen for implementation, because it is 
considered fast, reliable and easy to use. 

2.3   Database Content 

The current implementation of the system was intended for use on a national level 
within Germany. Currently, collaborators from 17 clinical centers, three virologic labs 
and two information technology institutes are participating. As of March 2006, the da-
tabase contains data from over 5,720 patients, including 9,685 therapies, 5,290 viral 
genomic sequences and 48,502 clinical test results. Virtually all components of the 
system are scalable to larger settings. However, since data quality is a key factor and 
has been identified as a major challenge, emphasis lies on well-defined data sets and 
close cooperation. 

2.4   System Configuration 

Electronic patient records require special protection when stored or transferred across 
networks [16, 17]. In the present case, eavesdropping or theft of information may un-
cover the fact of someone being HIV-positive or his or her detailed medical history. 
Fraudulent manipulation of data might lead to wrong interpretations and therapeutical 
decisions. Thus, we took strong technical measures to protect data from unauthorized 
access and corruption. The software modules necessary to run the database that have 
been described so far are the RDBMS client and server, and the web client (browser) 
and server including the CGI scripts. Security demands on the client side are limited 



 Arevir: A Secure Platform for Designing Personalized Antiretroviral Therapies 189 

to ensuring that the display is not visible to others. SSH connections are configured 
with a time-out function, which leads to the interruption of the connection after a cer-
tain time without data traffic. 

 
Fig. 2. Simplified entity-relationship diagram of the six main database modules comprising a 
total of 36 tables 

Access to the database is restricted to our project partners via both machine names 
(TCP/IP addresses) and user names. The only authentication method accepted by the 
SSH daemon is the public key system [18, 19]. Private keys are protected by pass 
phrases on the client machines. To establish the connection, a local port is forwarded 
to the server over the secure channel or tunnel. A second authentication step, the login 
onto the website, is performed using the basic authentication offered by the Apache 
web server. The login name must match an entry in the appropriate database table. 
Access to the database engine is managed by MySQL’s built-in privilege system,  
but since data from different institutions is stored in the same tables, access control is 
further refined within CGI scripts using the 'user-belongs to-institution' relation on the 
SQL level. Access to the database is via the clinician’s interface (Section 3.1). 



190 K. Roomp et al. 

2.5   Patient Identifiers 

The strict security measures described above allow the data to be accessed over the 
web by identifying a patient by its name and date of birth. Unlike using anonymous 
patient identifiers, this name-based identification method assures usability in clinics 
and promotes data integrity. On the other hand, the restrictive system architecture en-
tails some limitations on speed and ease of use, notably on printing web contents. 

Patient names are not stored in plaintext in the database. Instead, we use a one-way 
hash function to generate pseudonyms. The Secure Hash Algorithm (SHA-1) [20] is 
applied to patient name and date of birth. SHA-1 produces a 160-bit hash code. Stor-
ing pseudonyms instead of plaintext patient names implicates that given the hash 
function only comparisons between requested patients and the database contents are 
possible. This procedure minimizes the risk of the database being abused for uncover-
ing HIV-infections.  

Finally, computational analyses on patient data are performed only on anonymous 
data by dropping the pseudonyms table prior to further processing. 

3   Web Interfaces 

In the next months, the front-end on the web server will made available in PHP, the 
back-end will be implemented in object-oriented C++. These two levels communicate 
using XML-RPC. The motivation for switching to a PHP-interface is to physically 
separate the presentation layer from the algorithm layer in a two-tier architecture, as 
well as better integration of C++ routines for performance optimization. Currently, the 
web-interfaces were still implemented as a collection of CGI scripts written in Perl 
that query the database via Perl’s DBD/DBI interface and dynamically generate 
HTML documents. 

3.1   Clinician Interface 

We have developed a web-based interface to the database for clinicians and virolo-
gists. For these users the view of the data is through a single patient or a single patient 
sample. Treating physicians and lab personnel are able to access an integrated view of 
all relevant data for one patient, including personal data, therapy data, clinical data, 
resistance data, and data on cell tropism (genotypic and phenotypic data). Addition-
ally, clinicians are able to enter and update patient data using the interface. 

A graphical representation of the time course of infection facilitates the efficient 
perception of information. Important clinical parameters, such as viral load and CD4+ 
cell count, are plotted versus the history of medications. Hyperlinks provide direct ac-
cess to more detailed information, such as resistance test results. 

3.2   geno2pheno[resistance] 

The first tool for the interpretation of sequence data that was developed is called 
geno2pheno[resistance] [12, 21]. This tool uses statistical learning techniques for the 
prediction of phenotypic drug resistance from genotypes. Based on a set of approxi-
mately 800 matched genotype-phenotype pairs from Arevir, regression models were 
 



 Arevir: A Secure Platform for Designing Personalized Antiretroviral Therapies 191 

constructed. As the range of resistance factors varies considerably between different 
drugs, two scoring functions are derived from different sets of predicted phenotypes. 
First, predicted values are compared to those of samples derived from treatment-naive 
patients and the relative deviance is reported via a z-score. Second, the estimation of 
the probability density of predicted phenotypes gives rise to an intrinsic definition of a 
susceptible and a resistant subpopulation. For a predicted phenotype, we calculate the 
probability of membership in the resistant subpopulation. Both scores provide stan-
dardized measures of resistance based on the genotype that are comparable between 
drugs.  

Physicians can therefore not only evaluate a genotypic resistance test result in the 
context of the patient’s medical history and current immunological status, but also 
have access to a phenotypic interpretation of the genotype. Currently, resistance muta-
tions in the protease and RT genes are used by the system. 

A version of geno2pheno[resistance] that is decoupled from the Arevir database 
can be accessed on the Internet at www.geno2pheno.org. 

3.3   geno2pheno[coreceptor] 

A new subclass of entry inhibitor drugs known as coreceptor anatgonists tries to pre-
vent cell entry of HIV by binding to one of the two chemokine receptors (CCR5 and 
CXCR4), which are used by the virus as coreceptors for entering the cell. One of 
these drugs has been approved so far, with several more having entered phase III 
clinical trials. Drug treatment is complicated by the possibility of inducing a corecep-
tor switch where the virus, under drug pressure, adapts and begins to use the other 
coreceptor for which no drug is being given. Thus, treatment should be accompanied 
by frequent monitoring of viral coreceptor usage. As in the case of resistance testing, 
in routine diagnostics the only feasible way to accomplish this is by experimentally 
determining the genotype. Additionally, switching, particularly from CCR5 to 
CXCR4 virus (also naturally occurring in 50% of patients), is associated with pro-
gression towards AIDS. 

In light of these considerations, we have developed geno2pheno[coreceptor] for 
predicting viral coreceptor usage from the third variable loop of the HIV envelope 
protein gp120 [22, 23]. Alignments of the envelope V3 loop region were obtained  
using ClustalW and a fixed reference alignment. Six statistical learning methods op-
erating on the entire V3 loop were evaluated on a set of 1110 matched genotype-
phenotype pairs from different subtypes using cross-validation. In a receiver operating 
characteristic (ROC) analysis, classifiers based on support vector machines (SVMs) 
showed significantly higher area under the ROC curve than other methods (p-value 
less than 0.001) and dominated all other methods in terms of sensitivity at practically 
important specificity rates. The tool is able to deal with data from both clonal and 
population-based sequencing. We have recently shown that predictive performance 
can be further improved by incorporating information on the host CCR5 genotype and 
immunological status, making use of both genomic and immunological datasets con-
tained within Arevir. 

geno2pheno[coreceptor] can also be accessed in a stand-alone version at 
www.geno2pheno.org  



192 K. Roomp et al. 

3.4   THEO 

The growing number of drugs increases the number of available combination thera-
pies which can be given to patients. There are no objective selection criteria for an op-
timal regimen, thus a computer-aided solution is called for. Our approach does not 
only incorporate the genotype itself as a predictor, but also the dynamics of viral evo-
lutionary escape from the considered regimen [24].  

We formulated the problem as a binary classification task (therapy failure vs. ther-
apy success) based on the measured virological response. Treatment change episodes 
(comprising matched genotype, therapy, and outcome data) were extracted from the 
Arevir database yielding 552 therapy failures and 224 successes. For integrating evo-
lutionary information, we compared an explicit search through sequence space [25] to 
an alternative based on estimating the probability of escape [26]. In the latter ap-
proach, we computed the genetic barrier using a probabilistic evolutionary model, in 
which resistance mutations accumulate along different mutational pathways. Across 
several statistical learning methods, the genetic barrier-based approach consistently 
outperformed explicit search through sequence space, improving accuracy of therapy 
outcome prediction from above 20% to 14.3% (±2.5%). 

THEO, a prototypical implementation of the optimal approach, is freely available 
at www.geno2pheno.org. 

4   Legal Aspects 

For enrollment in Arevir, patients need to consent explicitly to providing their data 
and can revoke their agreement at any time. They are informed in detail about project 
goals and technical realizations. Thus, patients decide on their participation being 
fully aware of the potential benefit versus the risks of exposure. The described secu-
rity concept, complemented by organizational measures such as a physically secured 
server machine and well-defined responsibilities for it, has been examined and ap-
proved by federal state data security officials. 

5   Conclusion 

We have presented a web-based data management system for collaborative research 
on HIV of direct clinical relevance. The system has the goal of optimizing antiretrovi-
ral therapies in view of viral sequence data. Our focus is on providing a basis for pa-
tient management, evidence-based decision-support and research at the same time. 
These seemingly diverse tasks can be unified in a natural way into one system on the 
basis of a common data model. The system design supports a cyclic optimization 
process that involves clinical practice, diagnostics and computational analysis. This 
approach may be seen as a real-life example of incorporating bioinformatics methods 
into clinical practice. Meeting this challenge required the design, implementation and 
validation of elaborate diagnostic and decision-support tools that operate on complex 
data in a clinical setting. The presented data model proves its flexibility in admitting 
new clinical parameters, and new drugs with new target molecules. 



 Arevir: A Secure Platform for Designing Personalized Antiretroviral Therapies 193 

Acknowledgements 

We are grateful to all participants in the Arevir project, Hauke Walter, Klaus Korn, 
Thomas Berg, Patrick Braun, Gerd Fätkenheuer, Mark Oette, Jürgen Rockstroh, and 
Bernd Kupfer. Deutsche Forschungsgemeinschaft (DFG) has funded much of the 
Arevir research in the context of the Priority Program on Informatics Methods for the 
Analysis and Interpretation of Large Genomic Datasets and of the Bioinformatics 
Center Saar. N.B. is funded by DFG under grant No. BE 3217/1-1. 

References 

1. Stanic, A., Schneider, T.K.: Overview of Antiretroviral Agents in 2005. Journal of Phar-
macy Practice 18 (2005) 228-246 

2. Marcello, A.: Latency: the hidden HIV-1 challenge. Retrovirology 3 (2006) 7 
3. Powderly, W.G.: Long-term exposure to lifelong therapies. J Acquir Immune Defic Syndr 

29 Suppl 1 (2002) S28-40 
4. Perrin, L., Telenti, A.: HIV treatment failure: testing for HIV resistance in clinical prac-

tice. Science 280 (1998) 1871-1873 
5. Walter, H., Schmidt, B., Korn, K., Vandamme, A.M., Harrer, T., Uberla, K.: Rapid, phe-

notypic HIV-1 drug sensitivity assay for protease and reverse transcriptase inhibitors. J 
Clin Virol 13 (1999) 71-80 

6. Shafer, R.W., Kantor, R., J. Gonzales, M.J.: The Genetic Basis of HIV-1 Resistance to 
Reverse Transcriptase and Protease Inhibitors. AIDS Rev 2 (2000) 211-228 

7. DeGruttola, V., Dix, L., D'Aquila, R., Holder, D., Phillips, A., Ait-Khaled, M., Baxter, J., 
Clevenbergh, P., Hammer, S., Harrigan, R., Katzenstein, D., Lanier, R., Miller, M., Para, 
M., Yerly, S., Zolopa, A., Murray, J., Patick, A., Miller, V., Castillo, S., Pedneault, L., 
Mellors, J.: The relation between baseline HIV drug resistance and response to antiretrovi-
ral therapy: re-analysis of retrospective and prospective studies using a standardized data 
analysis plan. Antivir Ther 5 (2000) 41-48 

8. Kuiken, C., Korber, B., Shafer, R.W.: HIV sequence databases. AIDS Rev 5 (2003) 52-61 
9. Wang, D., Bloor, S., Larder, B.A.: The application of neural networks in predicting pheno-

typic resistance from genotypes for HIV-1 protease inhibitors. Antivir Ther (2000) 51-52 
10. Sevin, A.D., DeGruttola, V., Nijhuis, M., Schapiro, J.M., Foulkes, A.S., Para, M.F., 

Boucher, C.A.: Methods for investigation of the relationship between drug-susceptibility 
phenotype and human immunodeficiency virus type 1 genotype with applications to AIDS 
clinical trials group 333. J Infect Dis 182 (2000) 59-67 

11. Beerenwinkel, N., Schmidt, B., Walter, H., Kaiser, R., Lengauer, T., Hoffmann, D., Korn, 
K., Selbig, J.: Geno2pheno: Interpreting Genotypic HIV Drug Resistance Tests. IEEE In-
telligent Systems in Biology (2001) 35-41 

12. Beerenwinkel, N., Schmidt, B., Walter, H., Kaiser, R., Lengauer, T., Hoffmann, D., Korn, 
K., Selbig, J.: Diversity and complexity of HIV-1 drug resistance: a bioinformatics ap-
proach to predicting phenotype from genotype. Proc Natl Acad Sci U S A 99 (2002) 8271-
8276 

13. Cordes, F., Kaiser, R., Selbig, J.: Bioinformatics approach to predicting HIV drug resis-
tance. Expert Rev Mol Diagn 6 (2006) 207-215 

14. Tierney, W.M.: Improving clinical decisions and outcomes with information: a review. Int 
J Med Inform 62 (2001) 1-9 



194 K. Roomp et al. 

15. Marshall, W.W., Haley, R.W.: Use of a secure Internet Web site for collaborative medical 
research. Jama 284 (2000) 1843-1849 

16. Schoenberg, R., Safran, C.: Internet based repository of medical records that retains patient 
confidentiality. Bmj 321 (2000) 1199-1203 

17. Mandl, K.D., Szolovits, P., Kohane, I.S.: Public standards and patients' control: how to 
keep electronic medical records accessible but private. Bmj 322 (2001) 283-287 

18. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Informa-
tion Theory (1976) 472-492 

19. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and pub-
lic-key cryptosystems. Communications of the ACM (1978) 120-126 

20. Secure Hash Standard. FIPS PUB. Federal Information Processing Standards (1995) 
21. Beerenwinkel, N., Daumer, M., Oette, M., Korn, K., Hoffmann, D., Kaiser, R., Lengauer, 

T., Selbig, J., Walter, H.: Geno2pheno: Estimating phenotypic drug resistance from HIV-1 
genotypes. Nucleic Acids Res 31 (2003) 3850-3855 

22. Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T.: ROCR: visualizing classifier per-
formance in R. Bioinformatics 21 (2005) 3940-3941 

23. Sirois, S., Sing, T., Chou, K.C.: HIV-1 gp120 V3 loop for structure-based drug design. 
Curr Protein Pept Sci 6 (2005) 413-422 

24. Beerenwinkel, N., Sing, T., Lengauer, T., Rahnenfuhrer, J., Roomp, K., Savenkov, I., 
Fischer, R., Hoffmann, D., Selbig, J., Korn, K., Walter, H., Berg, T., Braun, P., Fatken-
heuer, G., Oette, M., Rockstroh, J., Kupfer, B., Kaiser, R., Daumer, M.: Computational 
methods for the design of effective therapies against drug resistant HIV strains. Bioinfor-
matics 21 (2005) 3943-3950 

25. Beerenwinkel, N., Lengauer, T., Daumer, M., Kaiser, R., Walter, H., Korn, K., Hoffmann, 
D., Selbig, J.: Methods for optimizing antiviral combination therapies. Bioinformatics 19 
Suppl 1 (2003) i16-25 

26. Beerenwinkel, N., Daumer, M., Sing, T., Rahnenfuhrer, J., Lengauer, T., Selbig, J., Hoff-
mann, D., Kaiser, R.: Estimating HIV evolutionary pathways and the genetic barrier to 
drug resistance. J Infect Dis 191 (2005) 1953-1960 



The Distributed Annotation System for
Integration of Biological Data

Andreas Prlić1, Ewan Birney2, Tony Cox1, Thomas A. Down1, Rob Finn1,
Stefan Gräf2, David Jackson1, Andreas Kähäri2, Eugene Kulesha1, Roger

Pettett1, James Smith1, Jim Stalker1, and Tim J.P. Hubbard1

1The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK

ap3@sanger.ac.uk,
http://das.sanger.ac.uk/registry/

2EMBL - European Bioinformatics Institute, Hinxton, UK

Abstract. The Distributed Annotation System (DAS) is a protocol for
sharing of biological data which allows for dynamical data integration. It
has become widely used in both the genome and protein bioinformatics
communities. Here we provide an overview of the available DAS infras-
tructure and present our latest developments, including a registration
server that facilitates service discovery by DAS clients while automati-
cally monitoring service availability. Currently there are 108 registered
DAS servers, provided by 24 institutions in 10 countries.

1 Introduction

Annotation of biological data, such as genome and protein sequences, is one
of the central tasks in biological research. This is done by different means, for
example manually, computationally and experimentally. There are a number of
centralized resources available that are working on the integration of these data.
They are facing the problems of how to manage the vast amount of data that is
available, the need for frequent updates and releases, and how to exchange data
with other institutions and users.

The Distributed Annotation System (DAS) is a protocol that addresses these
issues and facilitates the sharing of biological data [1]. It is based on the idea that
annotation data is not aggregated into large centralized databases, but instead
is spread over multiple sites, generally maintained by the original data creators.
DAS is frequently used for

1. integration of personal data into bioinformatics resources,
2. integration of the annotations from external sources into local applications,
3. access to most recent data versions without the need for local installations,

DAS is a web service protocol built upon well established open technologies
(HTTP and XML), with some similarities to SOAP-based services. Where SOAP
services use XML requests and responses for the transport of information, DAS

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 195–203, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



196 A. Prlić et al.

provides a data model, a query model, and a transport. The returned XML
documents contain objects like sequence or feature. All data are provided by
DAS servers and it is up to a DAS client to retrieve the annotations from
multiple servers and to integrate these into a visualization that is presented
to the user (see Fig. 1). For a detailed description of the DAS protocol see
http://www.biodas.org/documents/spec.html.

The DAS protocol was originally designed to serve annotation for genomes.
Resources like the Ensembl genome browser utilize this protocol to visualize new
or personal data in the context of other annotations [2]. Different web pages,
“views”, provide access to annotation data for e.g. chromosomes, transcripts,
genes, or proteins. Each of these views acts as a DAS client. A management
interface allows users to configure a list of DAS servers from which annotation
should be retrieved. Once a new server has been added in the configuration,
Ensembl establishes the contact to the server, fetches the data, and displays it
together with other annotations. In this setup the Ensembl web server acts as a
data-proxy and the users can access all data via their web browsers.

Over the last few years DAS has also been used to share annotations of pro-
teins. We recently presented SPICE, a browser of protein structures, sequences,
and their annotations, which is built on DAS [3]. SPICE is a Java application
that installs and runs locally using the Java Web-Start technology. It can be
launched by simply following a link on a web page. SPICE provides an inte-
grated view of protein sequence and structure and can project annotations from
one coordinate system onto another. This, for example, allows it to display pro-
tein sequence annotations with respect to their position on the protein structure.
SPICE is integrated with Ensembl (see Fig. 2).

Dasty is another protein DAS client [4]. It is a Java application with a Macro-
media Flash front-end, and all DAS communication is done via a dedicated
server. Other DAS clients that can be easily integrated into web pages are
ProView (http://www.sanger.ac.uk/proview/) or the CBS DAS Viewer [5].

DAS has been widely adopted in the bioinformatics community, because it is
simple to use and simple to set up. Both DAS servers and client software are avail-
able with implementations in multiple languages: In Perl there is support for set-
ting up a DAS server using ProServer (http://www.sanger.ac.uk/proserver/)
or LDAS (http://www.biodas.org/servers/LDAS.html), while users who pre-
fer Java can use Dazzle (http://www.derkholm.net/thomas/dazzle/). Client
libraries are also available in Perl, e.g. the Bio::DasLite library (http://search.
cpan.org/∼rpettett/Bio-DasLite/), and in Java (http://www.biojava.
org/, http://www.spice-3d.org/dasobert/), making integration of DAS sup-
port into new and existing bioinformatics tools easy.

Several collaborations are providing support for DAS. The BioSapiens Net-
work of Excellence (http://www.biosapiens.info/) is providing a large num-
ber of DAS sources, which are listed at the BioSapiens Information Resource
(http://www.biosapiens.info/page.php?page=biosapiensdir). BioSapiens
also provides a Portal that can query UniProt and provides access to several DAS
clients (http://www.biosapiens.info/page.php?page=das portal). Another



The Distributed Annotation System for Integration of Biological Data 197

D
A

S
 c

lie
n

t

X
M

L

U
R

L

g
et

 s
eq

u
en

ce
&

 f
ea

tu
re

s
o

ve
r 

H
T

T
P

D
A

S
 a

n
n

o
ta

ti
o

n
 &

re
fe

re
n

ce
 s

er
ve

rs
se

rv
er

 1

se
rv

er
 2

se
rv

er
 3

se
rv

er
 4

F
ig

.1
.A

D
A

S
cl

ie
nt

re
tr

ie
ve

s
da

ta
fr

om
se

ve
ra

l
D

A
S

se
rv

er
s.

In
th

is
sc

he
m

at
ic

ex
am

pl
e

th
e

U
ni

P
ro

t
D

A
S

se
rv

er
pr

ov
id

es
th

e
re

fe
re

nc
e

se
qu

en
ce

an
d

so
m

e
an

no
ta

ti
on

s.
O

th
er

D
A

S
se

rv
er

s
ar

e
av

ai
la

bl
e

th
at

pr
ov

id
e

ad
di

ti
on

al
an

no
ta

ti
on

s
fo

r
th

e
sa

m
e

se
qu

en
ce

.T
he

E
ns

em
bl

P
ro

tV
ie

w
in

te
gr

at
es

th
e

da
ta

in
to

a
co

m
m

on
di

sp
la

y.



198 A. Prlić et al.

Fig. 2. A screenshot of the Ensembl ProtView and SPICE. A DAS track is available
in Ensembl that shows which protein structures are aligned to the protein. By clicking
on the DAS track the SPICE browser can be launched. SPICE shows the protein
structure, the UniProt sequence, and the Ensembl predicted protein (ENSP) sequence.
One of the exons is selected and its position can be projected onto the 3D structure.



The Distributed Annotation System for Integration of Biological Data 199

project that provides support for DAS is the eFamily project (http://www.
efamily.org.uk/).

1.1 Registration of DAS Servers

DAS servers are divided into two categories. Reference sources provide the ob-
ject to be annotated, e.g. a sequence or the 3D structure. Annotation sources
provide the features of these objects. A number of different DAS sources have
been released over the years providing annotations for different organisms and on
different levels. The DAS protocol does not suggest how DAS clients can discover
DAS sources that provide annotation. So far this has been done by hard-coding
a list into a client, or requiring users to directly enter the URLs used to com-
municate with individual servers. Also, DAS does not define how to deal with
the fact that different annotation servers provide the data for different types of
biological objects. To address this we have developed a DAS registration server.

The DAS registration server fulfils several purposes:

1. It allows users (or their client software) to query and retrieve lists of available
DAS sources via either a web interface or a XML web service for program-
matic access.

2. It is able to direct a user to any of the most common DAS clients and attach
the registered DAS server that the user is interested in seeing annotations
from.

3. It automatically validates DAS sources to make sure they provide valid DAS-
XML.

4. It can notify the administrator of a DAS source if the server has been down
for a while.

5. It groups the registered DAS sources according to the coordinate system of
the provided data.

There are three components to a Service Orientated Architecture concept: Ser-
vice provider, service requestor, and a service registry. Connecting these compo-
nents together are three operations: publish, find, and bind. The original DAS
protocol partially implements this architecture, with DAS servers being the ser-
vice providers and the clients being the requestors. By providing the new regis-
tration service that supports discovery, DAS has become a full Service Oriented
Architecture.

2 System and Methods

In this section we present various concepts and terminology that is applicable
for DAS.

2.1 Coordinate Systems

DAS is used to annotate many different object types: genomes, gene loci, protein
sequences, and structures are currently the most common cases. For each type,



200 A. Prlić et al.

there are a number of meaningful ‘sets’ of objects — for example, the chromo-
some sequences in a particular assembly of the human genome. To allow data
integration, clients must be able to find all the DAS servers which annotate a
particular set of objects. We call the description of these sets coordinate systems.
It can also be thought of as a “namespace”. The following information is used
for their description:

(1) The authority (or name). This is the name of the institution that defines
the identifiers or accession numbers for a particular set of objects. In case of
genome assemblies this field also contains the version of the assembly. For ex-
ample, UniProt is an authority to assign protein sequence accession codes, while
the currently used build for the human genome is NCBI 36.

(2) The type of object that is being annotated. This entity refers to the “physi-
cal dimension” of the data. Currently supported are Chromosome, Clone, Contig,
Gene ID, NT Contig, Protein Sequence, Protein Structure, and Scaffold.

(3) The organism. The scientific name of an organism. This field is optional,
since some DAS sources provide annotations for more than one organisms.

2.2 DAS Capabilities

The DAS specification (version 1.5, http://biodas.org/documents/spec.
html) defines a number of commands that can be sent to DAS servers. They
are sequence, features, types, entry points, dna, stylesheet. These are supported
by the registration server together with the DAS extensions required for protein
3D structure annotations, structure, alignment, as described at http://www.
efamily.org.uk/xml/das/documentation/.

2.3 Validation

There exist a number of different server side implementations to provide data
via a DAS source. Frequently used ones include Dazzle (http://www.derkholm.
net/thomas/dazzle/), ProServer (http://www.sanger.ac.uk/proserver/),
and LDAS (http://biodas.org/download/ldas/) but sometimes individually
implemented CGI scripts are used as well. In order to ensure a DAS source com-
municates in valid DAS-XML it can only be registered if it successfully validates
by returning a correct DAS response for each of the capabilities for which it is
registered. For this a test code is required, which is an accession code that has
been annotated and for which features are provided.

Once a DAS source has been registered, the registry software contacts it peri-
odically and attempts to validate it. Successful validation attempts are logged,
and a graphical summary of the availability of a DAS source is available via
the registry’s web interface. If the DAS source can not be validated for more
than two days, a watchdog can (optionally) inform the server’s administrator.
If a server is down for a longer period of time, the server administrator can be



The Distributed Annotation System for Integration of Biological Data 201

contacted to inquire about the status of the server. If the server remains unavail-
able for an extended period, it will be removed from the listing.

2.4 Auto-activation

At the present stage the registry communicates with three DAS clients: En-
sembl [2], SPICE [3], and Dasty [4]. Each of these can retrieve a list of available
DAS sources from the repository. With appropriate client support, the registry
can also communicate back in the reverse direction: DAS sources can be activated
in a client by clicking on an icon in the registry web interface. In Ensembl the
DAS server can be automatically added to the configuration of a particular view.
The registry also provides a send to friend mechanism to share auto-activation
links by email.

2.5 Implementation

The registration server at its core is a web service, backed by a MySQL database.
The service can be accessed at http://das.sanger.ac.uk/registry/
services/das:das directory?wsdl. It can be used by different DAS clients
to query and retrieve server listings or to validate DAS sources. A HTML front-
end is provided which allows manual interaction with the registry (http://das.
sanger.ac.uk/registry/). These web pages are based also on the web service.
The HTML front-end is implemented as a set of JSP pages running on a Resin
server.

3 Discussion

DAS is a data integration technology which is widely used in the genome and
protein bioinformatics communities. A repository for registering and discovering
DAS servers has been missing so far. Here we provide such a service. The DAS
registry can interact with DAS clients and auto-activate a DAS source in the
DAS client. On the management side the registry ensures that DAS sources
follow the specification, and helps administrators to monitor the availability of
their DAS sources. If a DAS server has been inactive for a while, we usually
contact the administrators in order to query the status of the server. If it has
become obsolete it can be removed from the repository.

We are participating in the development of DAS/2, a major update to the core
DAS protocol (http://biodas.org/documents/das2/das2 protocol.html).
DAS/2 will add the ability to search sets of features by identifiers and other
properties (for instance, to find a gene given its name), and provides servers
with extension mechanisms, allowing DAS features to be annotated with addi-
tional structured information (in XML format) as well as textual notes. DAS/2
also specifies an upload mechanism, so advanced clients can write back manually
curated annotations to a DAS server.



202 A. Prlić et al.

Fig. 3. The number of registered DAS sources over time. Currently there are 108 DAS
sources available from 24 institutions in 10 countries.

The registration server currently contains 108 DAS sources provided by 24
institutions in 10 countries. Over the last year the number of registered DAS
sources has been constantly growing (see Fig. 3). If this trend continues, at some
point additional tools might be required for users to maintain an overview of the
provided data. One way to achieve so could be to provide a user rating system,
similar to what is known from popular online stores. Ideally such a system would
be supported within the DAS clients, so user could rate a DAS source in a client,
which would be communicated back to the registration server. DAS clients could
sort DAS servers according to their popularity.

Acknowledgments

We want to thank everybody who provides DAS servers and shares the data
with the community. The system would not work without you. This work has
been supported by the Medical Research Council, The Wellcome Trust, and the
BioSapiens Network of Excellence. All source code is available under LGPL from
http://www.derkholm.net/svn/repos/dasregistry/.



The Distributed Annotation System for Integration of Biological Data 203

References

1. Dowell, R.D., Jokerst, R.M., Day, A., Eddy, S.R., Stein, L.: The distributed anno-
tation system. BMC Bioinformatics. 2 (2001) 7–7

2. Birney, E., Andrews, D., Caccamo, M., Chen, Y., Clarke, L., Coates, G., Cox, T.,
Cunningham, F., Curwen, V., Cutts, T., Down, T., Durbin, R., Fernandez-Suarez,
X.M., Flicek, P., Gräf, S., Hammond, M., Herrero, J., Howe, K., Iyer, V., Jekosch,
K., Kähäri, A., Kasprzyk, A., Keefe, D., Kokocinski, F., Kulesha, E., London, D.,
Longden, I., Melsopp, C., Meidl, P., Overduin, B., Parker, A., Proctor, G., Prlić, A.,
Rae, M., Rios, D., Redmond, S., Schuster, M., Sealy, I., Searle, S., Severin, J., Slater,
G., Smedley, D., Smith, J., Stabenau, A., Stalker, J., Trevanion, S., Ureta-Vidal,
A., Vogel, J., White, S., Woodwark, C., Hubbard, T.J.P.: Ensembl 2006. Nucleic
Acids Res 34(Database issue) (2006) D556–61

3. Prlić, A., Down, T.A., Hubbard, T.J.P.: Adding Some SPICE to DAS. Bioinfor-
matics 21 Suppl 2 (2005) ii40–ii41

4. Jones, P., Vinod, N., Down, T., Hackmann, A., Kahari, A., Kretschmann, E., Quinn,
A., Wieser, D., Hermjakob, H., Apweiler, R.: Dasty and UniProt DAS: a perfect
pair for protein feature visualization. Bioinformatics 21(14) (2005) 3198–9

5. Olason, P.I.: Integrating protein annotation resources through the Distributed An-
notation System. Nucleic Acids Res 33(Web Server issue) (2005) W468–70



An Information Management System for
Collaboration Within Distributed Working

Environment
(Systems Paper)

Maria Samsonova, Andrei Pisarev, Konstantin Kozlov, Ekaterina
Poustelnikova, and Arthur Tkachenko

St.Petersburg State Polytechnical University, St.Petersburg, 195251 Russia

Abstract. Over a period of several years we apply the systems biol-
ogy approach to investigate the dynamic regulatory mechanisms control-
ling the expression of segmentation genes in Drosophila embryo. Due to
ongoing data acquisition, development of new processing and analysis
methods, as well as modification and improvement of old ones serious
problems arose with data and workflows management. Different geo-
graphical location of research groups poses additional difficulties. To
solve these problems we have developed an information management
system using multiagent and REST architectures. This system is eas-
ily extendable to deal with new data processing and analysis methods,
flexible in specification and modification of these methods, scalable and
supports distributed processing and analysis of data.

1 Introduction

Recently the introduction of high-throughput techniques as well as digital record-
ing devices and computers lead to accumulation of large volumes of data. There
are hundreds of resources and applications available to a biologist via ”command
line” applications, databases, flat files, web forms or graphical user interfaces.
Publishing of data and providing services via the Internet has a long-lasting
tradition in biology. Taking advantage of the broad-bandwidth Internet connec-
tions, researches are able to connect remotely to computers to share research
data, tools and computing power.

Traditionally a biologist needs access to dozens of data types and services
to plan her experiments and analyze results. To obtain such an information a
researcher needs to navigate and download data from many computers, process,
integrate and analyze the downloaded information manually or to use complex
scripts to overcome incompatibilities. This is a very difficult and tedious task, as
resources are widely distributed, highly heterogeneous, diverse and autonomous.

The increase in data, the rapid growth in a number of analysis tools and
the range of knowledge needed to interpret and use them requires to develop
methods for at least partial automation of data and services integration. Among
obvious advantages of such an automation are reduction in a number of routine

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 204–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



An Information Management System for Collaboration 205

queries for wet lab biologists, possibility to perform and repeat data analysis
multiple times, reduction in research cost, as well as the transparency of code
and algorithms.

Currently several service oriented architectures (SOA) are used to integrate
heterogeneous resources. CORBA, RMI and DCOM are mainly applied to in-
tegrate Intranet applications. SOAs based on Web services concept use specific
protocols to access services. Though several widely recognized implementations
have been attempted [1,2,3,4] some aspects of these technologies impede their
use for creation of a highly integrated global biological data space. These are
developing and incomplete standards, introduction of several versions of stan-
dards with different policies in the field of patenting by different organizations
(W3C, OASIS, Grid, etc.), insufficient solution of safety questions, necessity to
modernize the already developed programs. Besides, as we will show in section
3.2, XML-representation of some data types (images, BLOBS, matrices) can
decrease the performance of application.

Contrary to all the architectures described the REST (Representational State
Transfer) architecture uses URIs to identify resources, and a small, globally
defined set of remote HttpMethods to access and manipulate the state of those
resources [5]. HTTP is the protocol by which resources are accessed. REST
proponents argue that the HTTP’s minimal method set and semantics, as well
as its ability to extend this method set as required is sufficiently general to model
any application domain.

This paper presents the application inspired by REST. It is designed to auto-
mate management and analysis of information generated by the consortium of
laboratories in USA, Russia and Western Europe. Here we describe the proto-
type of this system and demonstrate real-life scenarios of data processing and
analysis.

2 Materials and Methods

Over a period of several years the consortium of laboratories from St.Petersburg
Polytechnical University, the Ioffe Physical-Technical Institute (Russia), Stony
Brook University, Los Alamos National laboratory (USA) and University of Am-
sterdam (the Netherlands) investigates the dynamical regulatory mechanisms
which control the expression of segmentation genes in Drosophila embryo [6,7].
To solve this problem the systems biology approach is applied, which encom-
passes the acquisition of data on a large scale, mathematical modelling and
simulations.

Due to ongoing data acquisition, development of new processing and analysis
methods, as well as modification and improvement of old ones, serious prob-
lems have been encountered with data storage and management of application
programs. Additional problems are created by different geographical location of
performance sites, as often users need data or programs kept in another lab-
oratory. These problems complicate data analysis and processing and decrease
the efficiency of work as a whole. To automate information management and



206 M. Samsonova et al.

analysis, as well as to integrate different types of data and application programs
in all laboratories we start to develop an information management system known
as iSIMBioS (integrated Service Infrastructure for Molecular Biology Systems).

2.1 Information Flow

Like all other insects, the body of the fruit fly Drosophila is made up of repeated
units called segments. The segment determination happens during the first three
hours of the development of fruit fly and is controlled by the network of about
sixteen genes [8,9]. The expression of segmentation genes is registered by con-
focally scanning of fixed embryos stained with fluorescently tagged antibodies.
Images of gene expression obtained from these embryos serve as a raw material
for quantification of gene expression. The conversion of images into quantita-
tive data is performed in several steps, for each step the specialized methods for
image and data processing are developed and implemented [6]. This results in
the construction of reference data on expression of segmentation genes at cellu-
lar resolution and at each time point. Images and quantitative gene expression
data from individual embryos, as well as reference gene expression data are used
to study the dynamics of formation of segmentation gene expression domains,
precision of development and pattern formation and the mechanisms of segment
determination [10].

2.2 System Requirements

iSIMBioS is designed to provide flexible environment for on-line collaboration
of investigators from different laboratories via the Internet. As such the require-
ments to the system can be formulated in the following way: extendability to deal
with continuously growing number of images and data volumes, introduction of
new processing and analysis methods, integration with third parties tools; flexi-
bility in specification and modification of analysis methods; scalability; support
of distributed processing and analysis of data; provision of simultaneous access
of multiple users to shared data and methods; no need in programming skills or
familiarization how to install special software libraries and program tools for pro-
cessing and analysis of data; availability of powerful and friendly Web-based user
interface, as well as visualization tools; use of heterogeneous software/hardware
platforms; provision of access through firewall and proxy servers; support of
autonomous task performance upon connection hang up, as well as notification
about processing results; provision of continuous work, when new components
are added or old one are removed; sufficient response time and readiness charac-
teristics; failure-resistance, if malfunction of hardware or software components
happens; preferably based on open source software; portability across software
platforms.

The Web-service based SOAs cannot currently support the functionality re-
quired. The standardization of these technologies has not finished yet. Some of
the standards are on their way to become broadly adopted, while others have
overlapping functionality and/or are still immature in terms of software imple-
mentation. Incomplete standardization of the Web services’ ingredients such as



An Information Management System for Collaboration 207

Primergy

Primergy

HTTP

H
T

T
P

HTTP
H

T
T

P

I n t e r n e t

DBA

ISA

OLAP

CA

DB

DBA

ISA

OLAP

CA

DB

Fig. 1. iSIMBioS architecture

orchestration and choreography makes it problematic to apply these technolo-
gies to automate management and analysis of distributed data in distributed
environment.

Besides the important consideration in the choice of architectural style was
the availability of many in-house programs developed prior to the introduction of
Web services. Conversion of this software into Web services requires substantial
efforts and resources. At the same time all these tools need to be integrated with
XML-RPC and SOAP applications.

Finally the combined approach have been selected based on application of
both multiagent architecture and REST architectural style. The important ad-
vantage of multiagent systems is in their inherent modularity. Due to modularity
these systems are scalable and easy extendable. Moreover multiagent systems
with redundant components (databases, agents, application programs, other
services) are robust, highly adaptable to functional extensions and have high
readiness and reactivity characteristics. REST scales well with large numbers of
clients, enables data transfer in streams of unlimited size and type and supports
intermediaries (proxies and gateways) as data transformation and caching com-
ponents. Thus the joint use of multiagent and REST architectural styles enables
to satisfy almost all of the requirements to the system behavior. Therefore we
decided to built a system in which autonomous agents interact with each other



208 M. Samsonova et al.

via HTTP protocol and act as adaptors to integrate all types of programs and
services.

2.3 System Architecture

One of the most important aspects of the multiagent system development is to
define the basic entities within the system – the agents. The iSIMBioS archi-
tecture can be described as a hybrid multiagent architecture supporting both
deliberative and reactive actions of agents [11]. In this system the agents have
the following properties:

• autonomy: agents operate without the direct intervention of humans or
others, have some kind of control over their actions and internal state, can act
upon connection hang up;

• social ability: agents interact with other agents (and possibly humans) via
some kind of agent-communication language;

• reactivity: agents perceive the context in which they operate and react to
it appropriately;

• pro-activeness: agents do not simply act in response to their environment,
they are able to exhibit goal-directed behavior by taking the initiative.

Figure 1 presents the architecture of iSIMBioS. At present its configuration
includes two servers each containing all system components. All agents are de-
signed as multithreaded Java HTTP servers and implement complex scenarios
of distributed interactions in heterogeneous environment. The agents exchange
messages via HTTP (in public domain implementation) or HTTPS (in secure
corporate implementation) protocol and hence can be used in networks with
firewall and proxy server.

System Configuration. The information about agents and their functions
is stored in a coordination agent (CA) database. To ensure the actuality of
information about the system configuration

• each CA agent database stores the list of counteragents and their URLs,
list of functions, reference to the monitoring program, load and authorization
characteristics;

• each agent registers with CAs reporting its URL, logical names of executed
services, as well as the parameters of designed load characteristics;

• each agent notifies CAs about its scheduled sign-off (e.g.,due to decrease of
load on a given service or modification);

• all agents update the information about system configuration by notifying
CAs about their current load;

• if any agent or service is unavailable its counteragents notify CAs about
their failure to establish connection;

• functionality of the system as a whole and each registered service separately
is periodically monitored;

• CAs notify registered agents about changes in the configuration of the sys-
tem by sending HTTP/HTTPS messages;



An Information Management System for Collaboration 209

• system administrator is notified by e-mail if malfunction of the system hap-
pens.

Each agent selects a counteragent (or a required service) with regard to its
availability and load, a counteragent located on the same server being selected
first. This means that the interactions of agents are not static and can be re-
organized dynamically. It is the permanent tracking of the actual system con-
figuration and the dynamic reorganization of agent interactions that ensure the
capability of the system to reconfigure. This property allows to extend the func-
tionality of the system and to modify it in operation mode increasing the effi-
ciency of the system use.

System Components. In this section we present a detailed description of each
system component.

User Interface Agent (UIA). This agent supports user registration, local
searches on a client side and uploading of data and images to a server. It also
allows to visualize data and images inserted into a database; select application
program modules and specify parameters for data analysis and processing; vi-
sualize the results of processing and analysis; retrieve images and data from a
database, as well as select output formats and download data and images from
a database. Besides UIA provides for visualization of uploaded data and image
files, as well as for confirmation of user’s intention to insert this data into a
database.

Database Access Agent (DBA). DBA executes SQL queries to a database
via JDBC; formats query result as TXT, HTML or XML files and converts
images stored in a database into JPEG format for visualization on a client side.

Image Server Agent (ISA). This agent performs conversion of image formats
and image scaling using ImageMagic library. It also executes standard operations
on images (e.g. contrast enhancement, intensity filtering, combining of several
images, etc.). In addition ISA participates in retrieval of images from a database
for processing as well as in visualization of processed images as JPEGs.

OLAP Server. The OLAP server cooperates with DBA and ISA servers to ex-
ecute complex scenarios for image and data processing and analysis. The logical
rules are applied to implement this cooperation. The OLAP server communi-
cates also with the local database via JDBC and the remote database via DBA.
In addition this server interacts with registered workflow modules providing for
their initialization, function calls and result output. Communication with mod-
ules implemented as Web-services is mediated by the adapter agent. This agent
performs conversion of messages between SOAP and HTTP using Apache Axis
Soap toolkit, which supports the necessary level of functionality, security and
robustness. It also formats SOAP query results as a plain text.

Coordination Agent (CA). CA supports agent registration, and notifies
agents about current system status if requested. It also monitors the function-



210 M. Samsonova et al.

ality of the system and notifies registered agents about agent failure and other
changes in the configuration of the system. The system administrator is notified
about these changes via e-mail.

Database. To manage data and images we decide to use IBM DB2 RDBMS,
which supports necessary functionality and reliability of the system and requires
minimum familiarization efforts.

Workflows and Modules. In general each scenario for image processing or
data analysis consists of many steps executed by heterogeneous programs and
services. This software, as well as huge amount of data produced by the con-
sortium are distributed over network. To conduct in silico experiments a user
needs to combine these resources in a specific order thus forming a workflow. A
challenge in implementing the workflow is that each program or service (called
as workflow module) should be designed with the interface that can talk to the
program before and after it in the chain of calculations. This interface needs to
be flexible enough to support communication with different modules in different
workflows. Our approach provides a very powerful way to implement such an
interface. Modules communicate with each other via agents. An agent can insert
data into a database, send it directly to the next module and modify configura-
tion files and other auxiliary data, if necessary. Agents interact with workflow
modules through different interfaces, XML-RPC, JNI (Java Native Interface),
Java Servlet, Java Server Pages, system calls (for command line modules) and
SOAP included.

2.4 Security Measures

In corporate implementation iSIMBioS is modified to include the subsystem pro-
viding security. To protect confidential user information we use a method which
extends standard HTTPS and SSL technologies by implementing additional au-
thorization and encryption (e.g., Blowfish) procedures, as well as supplementary
control of IP-address and access rights.

2.5 Control of Functionality

Services of any component based architecture will, at some point, fail. It is
therefore the responsibility of a controlling authority, in our case a coordinating
agent (CA), to handle such failures.

In iSIMBioS each agent or program module knows which tests it is necessary
to perform to check its functionality. When these services register with OLAP
the information about tests is collated into XML file. The CA uses this file to
test the system functionality periodically or should the failure of any service was
detected by one of its counteragents.

The XML file contains the list of test queries for each service, sample results,
references to methods used to check the correspondence of a test result to the
sample, as well as logical rules to infer the functionality of services. On execution
of tests, the CA builds up a fact base containing binary entries about the state



An Information Management System for Collaboration 211

of elementary function of each service. Next the productions rules are applied to
this base to infer the service functionality. When any service failure was detected
the CA notifies the system administrator via e-mail and other registered agents
by sending HTTP messages.

3 Implementation

3.1 User Interface

Local Interface. Local user interface supports visual construction of workflows
from program modules, workflow execution and visualization of both intermedi-
ate and final results (Fig. 2).

The workflow is constructed by joining program modules and represents a
directed acyclic graph. In this graph the nodes shown as rectangles are modules,
while the edges displayed as arrows are data-dependency links, which specify
that the output of one module serves as input to another one. After a program
module was visually constructed, its parameters are specified. Program modules
forming one workflow may be located on one server or may be distributed among
several server machines.

Following construction and debugging a workflow can be saved as a complex
program module in Java, Jscript or VBScript. This module can be re-used as an
individual workflow or in complex workflows consisting both from elementary
and complex program modules. A complex workflow can be executed in parallel
threads. This reduces its run-time by N times, where N is a degree of workflow
parallelism.

Web Interface. If the iSIMBioS local interface is not installed, a standard Web
browser can be used to process and analyze data. A Web form is available to
send requests using HTTP GET and POST methods (http://urchin.spbcas.ru/
downloads/esimbios/). A user can select files for analysis, send these files to
a distant server, visualize the uploaded files and/or processing results. On the
server side the program agent WSA (Web-browser to Scenario Agent) operates,
which launches the execution of workflow in distributed environment and can
act in multiuser mode.

Application Program Interface (API). XML-RPC and SOAP interfaces
are implemented to access iSIMBioS from command-line tools located on a client
computer. These interfaces are developed with standard libraries and serve to
pass a user request for distributed processing and load data into iSIMBioS, as
well as to return a result to the client. To implement this RXA (REST/XML-
RPC) and RSA (REST/SOAP) adaptor agents were developed converting data
from XML format to HTTP GET request and communicating with OLAP and
DBA agents.

The other approach to access iSIMBioS from command-line tools is to make
use of standard HTTP API present in all program packages for application de-
velopment. This requires to install and register an OLAP agent which serves to



212 M. Samsonova et al.

Fig. 2. Local user interface. The main window consists of two frames. The left one
displays the list of available workflow modules on each server machine. The right bigger
frame shows how to construct the workflow. We illustrate how to select the output port
for the workflow module called as max.

pass the HTTP GET request from a command-line application to iSIMBioS and
to return the pointer to processing result. The HTTP request contains point-
ers to data files and program modules located in public $httpd directories of
trusted iSIMBioS nodes. Data passing, as well as calls of program and services
are mediated by OLAP agents located on these nodes.

3.2 Client Interaction with Services Via SOAP and REST
Protocols: Comparative Analysis

The program module wavex was selected to test the efficiency of client interac-
tions with services via SOAP and REST protocols. This module performs the
Fast Dyadic Redundant Wavelet Transform (FRDWT) on 2-D array of quanti-
tative gene expression data.

The testing framework was designed as follows. First two clients were designed,
SOAP and REST. At the next step both clients were used to send requests to the
web service wavex located on a server. Note that SOAP client sends requests di-
rectly, while the REST client sends http-GET request via RSA (REST/SOAP)



An Information Management System for Collaboration 213

adaptor agent. For both clients the mean response time over a number of si-
multaneously sent requests was measured. The test was performed using Intel
Pentium 3.0 Ghz processor as a client and the Internet connection speed 100
Mbit/s.

 1  2  3  4  5  6  7

 6000

 2000

 4000

 8000

 10000 SOAP

REST

Number of simultaneous requests

T
im

e 
(m

s)

Fig. 3. REST and SOAP client interactions with the wavex web service

Our results show (Fig. 3) that the SOAP client requests are processed on
average of 16% more slowly than requests from the REST client. The worse
performance of the SOAP client in comparison with that of the REST one is
evidently caused by requirement of the SOAP protocol to use XML for the
data encapsulation. Conversion into XML format increases data volumes sent to
server and thus slows down the performance. We believe that the difference in
the SOAP and REST clients’ performance will be even more pronounced should
slow running client computer or Internet connection be used.

4 Discussion

We have designed iSIMBioS, the system prototype for collaboration within dis-
tributed working environment by applying a hybrid approach based on mul-
tiagent and REST architectural styles. This prototype is currently tested to
automate management and analysis of information on the dynamics of segment
determination in fruit fly Drosophila by research groups located in different coun-
tries.

iSIMBioS is build up from a set of program and services, as well as from an
infrastructure used to integrate these components. Program and services can be



214 M. Samsonova et al.

implemented as XML-RPC, SOAP, RMI, JDBC, CGI and command-line appli-
cations. Program agents with different custom interfaces are used to integrate
heterogeneous components into workflows. In conformity with REST model all
the agents interact via HTTP protocol.

iSIMBioS architecture has two remarkable features. First a workflow can be
saved as a complex program module in Java, Jscript or VBScript and re-used in
other workflows.

Secondly, when iSIMBioS is called by an application only pointers to data
files are transferred. Data passing is mediated by iSIMBioS itself and a pointer
to processing result is returned to a user. This is a distinctive feature which sets
apart iSIMBioS form the SOAP-based applications, as SOAP requires to transfer
data itself [5]. The solution implemented in iSIMBioS results in serious reduction
of transport expenses and consequently decreases time required to process and
analyze data and images. In addition, it also minimizes requirements to client
computers, as data and processing results are solely stored on iSIMBioS nodes.

In developing this prototype we do not concentrate on data storage and have
focused on design of system architecture, program components, as well as user
and program interfaces. However, when the DB agent was implemented, the
technology for interaction of the system components with different DBMS (e.g.,
IBM DB2, MySQL) was developed and evaluated on different test scenarios for
image and data retrieval from the available databases [12].

At present iSIMBioS architecture includes two servers each containing all sys-
tem components. This functional redundancy provides for robustness of workflow
enactments.

There are two features which make the construction of workflow in iSIMBioS
fast and convenient. These are possibilities to visualize the intermediate results
during workflow enactment and to visually select program components on the
iSIMBioS nodes.

iSIMBioS integrates both structured and unstructured data, as well as a vari-
ety of data processing and analysis methods implemented with different technolo-
gies (e.g. as RMI, JDBC, CGI, command-line applications, SOAP or XML-RPC
services) and located on different machines into holistic environment that can
be accessed in-real time through a simple and user friendly interface. We believe
that this environment may be productively used by biologists to simplify data
analysis, hypothesis testing and planning of wet-lab experiments.

Future developments of iSIMBioS will proceed in several directions. We will
add new data analysis and processing methods and enhance algorithms for plan-
ning sequential and parallel task executions. We are also going to use a DBMS to
store and manage all the information. We have already developed the database
model which supports the storage of data and programs and is extendable to meet
constantly changing user requirements without loss of time on data structure re-
organization or software modification. Currently we are implementing program
modules executing search, retrieval and saving of all the information. In addition
we plan to compare via benchmarks the efficiency of work of iSIMBioS and the
analogous application utilizing the SOAP protocol.



An Information Management System for Collaboration 215

Acknowledgements

This work was supported by NIH grant RR07801, NWO-RFFI grant 047.011.
2004.013, contract # 02.467.11.1005 with the Federal agency on science and
innovation of the Russian Federation and GAP award RUB1-1578-ST-05. The
authors are thankful to Alexander M. Samsonov for valuable discussions and
comments.

References

1. Stevens, R.D., Robinson, A.J., Goble, C.A.: mygrid: personalised bioinformatics
on the information grid. Bioinformatics 19 (2003) i302–i304

2. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition
and enactment of bioinformatics workflows. Bioinformatics 20 (2004) 3045–3054

3. Wilkinson, M., Schoof, H., Ernst, R., Haase, D.: Biomoby successfully integrates
distributed heterogeneous bioinformatics web services. the planet exemplar case.
Plant Physiology 138 (2005) 5–17

4. Senger, M., Rice, P., Oinn, T.: Soaplab - a unified sesame door to analysis tools.
In: Proceedings of the UK eScience All Hands Meeting. (2003) 509–513

5. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. Doctoral dissertation (2000)

6. Myasnikova, E., Samsonova, A., Kozlov, K., Samsonova, M., Reinitz, J.: Registra-
tion of the expression patterns of drosophila segmentation genes by two independent
methods. Bioinformatics 17 (2001) 3–12

7. Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K.N., Manu,
Myasnikova, E., Vanario-Alonso, C.E., Samsonova, M., Sharp, D.H., Reinitz, J.:
Dynamic control of positional information in the early drosophila embryo. Nature
430 (2004) 368–371

8. Foe, V.E., Alberts, B.M.: Studies of nuclear and cytoplasmic behaviour during
the five mitotic cycles that precede gastrulation in drosophila embryogenesis. The
Journal of Cell Science 61 (1983) 31–70

9. Ingham, P.W.: The molecular genetics of embryonic pattern formation in
drosophila. Nature 335 (1988) 25–34

10. Jaeger, J., Blagov, M., Kosman, D., Kozlov, K.N., Manu, Myasnikova, E., Surkova,
S., Vanario-Alonso, C.E., Samsonova, M., Sharp, D.H., Reinitz, J.: Dynamical anal-
ysis of regulatory interactions in the gap gene system of drosophila melanogaster.
Genetics 167 (2004) 1721–1737

11. Genesereth, M., Ketchpel, S.: Software agents. Communications of the ACM 37(7)
(1994) 48–53

12. Poustelnikova, E., Pisarev, A., Blagov, M., Samsonova, M., Reinitz, J.: A database
for management of gene expression data in situ. Bioinformatics 20 (2004) 2212–
2221



U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 216 – 223, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Ontology Analysis on Complexity and Evolution  
Based on Conceptual Model* 

Zhe Yang, Dalu Zhang, and Chuan Ye 

Department of Computer Science and Technology, Tongji University, 
Postal Code 20 18 04, Shanghai, P.R.C 

{Hatasen, Shtjjsjyjx}@hotmail.com, 
Daluz@ieee.org 

Abstract. With the tremendous development in size, the complexity of 
ontology increases. Thus ontology evaluation becomes extremely important for 
developers to determine the fundamental characteristics of ontologies in order 
to improve the quality, estimate cost and reduce future maintenance. Our 
research examines the concepts and their hierarchy in ontology conceptual 
model, the common feature of most ontologies, which reflects the funda- 
mental complexity. We suggest some well-defined metrics of complexity, 
which mainly examine the quantity, ratio and correlativity of concepts and 
relationships, to evaluate ontology from the viewpoint of complexity and 
evolution. In the study, we measured three ontologies in Gene Ontology to 
verify our metrics. The results indicate that these metrics works well, and the 
biological process ontology is the most complex one from the view of 
complexity, and the molecular function ontology is the unsteadiest one from the 
view of evolution. 

1   Introduction 

Large standardized ontologies are often developed by several researchers in parallel, 
such as GO [1]; a number of ontologies grow in the context of peer-to-peer 
applications [2]; other ontologies are constructed dynamically [3]. Although it 
becomes important to determine fundamental characteristics of ontologies [4], there 
are still very few commonly agreed methodologies and metrics to analyze and 
evaluate ontology complexity and evolution [5, 6]. Thus, metrics are expected to help 
developers to design ontologies, improve quality, estimate and reduce future 
maintenance costs in all life cycle.  

The rest of this paper is structured as following. Section 2 reviews some related 
works about ontology, evolution, evaluation and other metrics. Section 3 
introduces some formal notations of ontology conceptual model and proposes some 
complexity metrics. In section 4, the complexity analysis results of Gene  
Ontology are given to show its evolution trend. Section 6 is summary and outlook for 
future works. 
                                                           
* Supported by National Natural Science Foundation of China under Grant No. 90204010. 



 Ontology Analysis on Complexity and Evolution Based on Conceptual Model 217 

2   Related Works 

The variety of causes and consequences of the ontology changes makes ontology 
evolution a very complex operation that should be considered as both an 
organizational and a technical process [7].  

In contrast to the researches on ontology evolution and versioning, only little 
empirical work has focused on evaluation [8]. Ontology metrics is desired in ontology 
evaluation. Although some metrics have been suggested [9], more work is needed [8]. 
The most existing metrics are proposed to evaluate the syntactic, semantic, and 
structure of ontology conceptual model. There are few metrics investigating the 
ontology complexity and evolution. 

Burton et al. assessed the effectiveness of the DAML ontologies [10]. They 
suggested an ontology auditor metrics suite, and mainly considered the syntactic, 
semantic, pragmatic and social quality of ontologies.  

Literature [11] proposed a set of ontology cohesion metrics to measure the modular 
relatedness of OWL ontologies. These metrics is focused on the number of classes 
and depth of inheritance tree of all classes. And it computes cohesion metrics 
conceptually based on predefined OWL primitives, which explicitly defined tree-
based semantic hierarchies in OWL ontologies.  

In literature [12], authors use weighted class dependence graphs to represent a 
class diagrams, and present a structure complexity measure for the UML class 
diagrams based on entropy distance. It considers complexity of both classes and 
relationships between the classes. This method can measure the structure complexity 
of class diagrams objectively. 

Idris studied two conceptual integrity metrics based on graph theory is his PhD 
thesis [13], which are conceptual coherence and conceptual complexity. Conceptual 
coherence uses average distance between nodes in a graph to measure the 
interrelatedness of concepts. And conceptual complexity reflects the average number 
of relationships per node with the average degree across all nodes in a graph.  

Chris Mungall researched the increased complexity of Gene Ontology [14]. He 
measured the average number of paths-to-top of a term and used the path-to-term ratio 
to measure of complexity in an ontology, which is represented in DAG (directed 
acyclic graph). However, in his calculation of the total number of terms, the obsolete 
terms does not be eliminated. While calculating the paths-to-top of terms, the paths of 
these obsolete terms are not counted. Thus his result is not correct.  

3   Ontology Conceptual Model and Complexity Metrics 

3.1   Common Formal Notation 

We use the following notation to represent some terms in the ontology conceptual 
model. And small letters are used to identify the notations related to concepts and 
relationships, while capital letters are used to identify the terminology related to 
ontology and metrics. 

{ }1 2, , , mC c c c= : the set of m concepts defined in an ontology explicitly. In 

other ontologies, concept may be named as ‘‘class’’ or ‘‘term’’. 



218 Z. Yang, D. Zhang, and C. Ye 

{ }1 2, , , nR r r r= : the set of n relationships defined in an ontology explicitly. In 

other ontologies, relationship may be named as ‘‘slot’’. It only includes those 
inherited relationships that reflect the hierarchy of concepts, such as ‘‘is_a’’, 
‘‘part_of’’, etc.  

In ontology conceptual model, concepts hierarchy is typically expressed in DAG 
(directed acyclic graph) showed in figure 1. Each node represents a concept and each 
directed arc represents subtype relationship to present the hierarchical structure 
between concepts in ontology.  

{ }1 2, , , kP p p p= : the set of k paths in conceptual model of an ontology. In 

DAG, path is a distinct trace that can be taken from a specific particular concept to the 
most general concept in the ontology, which is the concept without any parent.  

Different path has its own length, thus the path length is defined as the sum of 
relationships on a path. So the set of path length in ontology is denoted as 

{ }1 2, , , kPL pl pl pl= . 

 

Fig. 1. One ontology conceptual model is represented in directed acyclic graph. There are 11 
concepts (m=11); two general concepts (c1 and c8) and concept c7 have three paths to general 
concept c1 (c7-c5-c2-c1, c7-c5-c1 and c7-c4-c2-c1). 

3.2   Complexity  Metrics 

Concepts: is the sum of concepts in an ontology. Concepts= C = m.  

Relationships: is the sum of relationships in an ontology. Relationships R n= = . 

Paths: is the sum of paths in an ontology. Paths P k= = . 

Λ : is the max path length of ontology. ( ) ,1imax pl i kΛ = ≤ ≤ . 

λ : is the average path length of ontology. 
1

k

i
i

pl kλ
=

= . 

These two metrics indicate the radius of the ontology in DAG, and the extension of 
the general concept. They measure the semantic scope covered by the ontology. 

μ : the average relationships per concept. /Relationships Concepts n mμ = = . It 

indicates the average connectivity degree of a concept. 
ρ : the average paths per concept. /Paths Concepts k mρ = = . For any 

ontology, ρ must be greater than or equal to 1 (each concept must have a parent  

 



 Ontology Analysis on Complexity and Evolution Based on Conceptual Model 219 

except for the general concept). If ρ =1, then the ontology is a tree (each concept has 

a single parent, and thus a single path to the most general concept). Multi-relationship 
concepts (higher μ ratio) result in higher ρ ratio for an ontology. 

σ : is the ratio of max path length to average path length of the ontology, /σ λ= Λ . 
This metric examines the concept aggregation of ontology. 

4   Statistics Analyses and Conclusions 

We measured the growing complexity of Gene Ontology [1] with the above metrics 
since we began archiving the ontologies from DEC.2002 to Jun. 2005. GO has three 
organizing ontologies: BP (biological process), CC (cellular component) and MF 
(molecular function). The graphs below illustrate the complexity evolution if the three 
GO ontologies over time. 

4.1   Biological Process 

In figure 2(a), it is indicated that Concepts and Relationships increased at a steady but 
slow rate. The average monthly increase rates are 1.17% and 1.44% respectively. The 
Paths have a rapid growth in quantity. The average monthly increase rate reaches 
8.75%. Moreover, before DEC. 2004, Paths increased relative steadily in most time. 
While after that, it increased leapingly, such as at time of DEC. 2004, Jan. 2005 and 
Apr. 2005. In figure 2(b), the line of μ  shows that increment of average relationships 

per concept is very little; the average monthly increase rate is only 0.26%. While the 
line of ρ  indicates the average paths per concept increased enormously, and the 

average monthly increase rate is 7.51%. Furthermore, it has the same evolution trend 
with the line of Paths in (a).  

If compare (a) and (b) carefully, we can find that the line of μ  in (b) also has the 

same evolution trend with the line of Relationships in (a), which leapingly increased 
over time. This trend is not so obviously in (a) only because of the numerical range on 
left Y-axis. While in (b), it is magnified. 

And if we examine the leap points on two lines in (b) by the time, we can conclude 
that the μ and ρ increased synchronously. Because path consists of relationships, the 

increase of μ means the ontology in DAG becomes more complex, the ρ will grow 

rapidly. This feature can be also observed on the lines of Relationships and Paths in 
(a), though not markedly. So it is concluded that the complexity of ontology can be 
indicated by the metrics of μ  and ρ  explicitly. 

From the line of Λ in (c), it shows an inerratic increase of max path length with 
two leap points over time. And the λ  increased steadily in most time. The average 
monthly increase rate is 0.48%. This metric reflects the average knowledge range 
covered by ontology; and its increase indicates the ontology is filling the knowledge 
extension with concepts and relationships But if magnify the fluctuation on the line, 
we can find that actually it increased leapingly at some time points, which are the 
same with lines of ρ in (b) and Paths in (a).  

 



220 Z. Yang, D. Zhang, and C. Ye 

   
(a)     (b) 

 
(c) 

Fig. 2. The complexity evolution of BP ontology. In (a) the left Y-axis shows the increase of 
concepts and relationships, and the right Y-axis shows the increase of paths. In (b) the left Y-
axis shows the increase of μ . The right Y-axis shows the increase of ρ . In (c) the left Y-axis 

shows the increase of Λ and λ . The right Y-axis indicates the increase of σ ratio. 

After examining the line of σ , it is concluded the following results. First, all 
values of this metric are less than 2, which means most concepts tightly surround the 
general concept or the core. Professionally, the concept aggregation is high. Second, 
when the Λ  increases, the σ metric will have a leaping increment synchronously. 
After that, when Λ remains while λ  increases, so theσ ratio will decrease until the 
Λ increases next time. Moreover, the faster the λ  increases, the faster the σ  
decreases. So according to the up or down of the line σ , we can qualitative analysis 
the variety of Λ  and λ  with only one metric.  

4.2   Cellular Component 

In figure 3(a), it is observed that the evolutions of concepts, relationships and paths 
are almost the same as the figure 2(a). And the monthly average increase rates are 



 Ontology Analysis on Complexity and Evolution Based on Conceptual Model 221 

1.28%, 1.92% and 7.24% respectively. The increase of paths is smoother than BP 
relatively. It has a big rise at Nov. 2004 only. 

   
(a)     (b) 

 
(c) 

Fig. 3. The complexity evolution of CC ontology. All configurations are the same as figure 2. 

Like the figure 3(b), the monthly average increase rates of μ and ρ are 0.63% and 

5.88%. As (c) showing, the evolution trends of Λ and λ are similar to BP ontology in 
figure 2(c). The average monthly increase rate of λ is 0.47%. However, the speed of 
Λ increase is faster than λ . The biggest difference lies in the values of σ ratio, most 
of which are over 2. It means the concept organization and aggregation of CC 
ontology are loose relatively.  

4.3   Molecular Function 

In figure 4(a), it is observed that concepts and relationships increase steadily except 
for the third quarter of 2003. However the paths fluctuated a lot over time. The 
average monthly increase rates are 1.07%, 0.91% and 0.79%. In figure 4(b),  
 



222 Z. Yang, D. Zhang, and C. Ye 

fluctuation trend of μ and ρ clearly indicate the complexity of MF is less than the 

beginning, and it fluctuated wider and rapidly than BP and CC ontologies in some 
degree. So the average monthly increase rates of μ and ρ are -0.14% and -0.23%. In 

the figure 4(c), it is observed that the λ  is almost changeless, even a little decrease. 
The average monthly increase rate is -0.02%. The evolution of Λ is much more 
different from the BP and CC. As we observed in figure 2(c) and 3(c), the line of 
Λ increases with time. But in this figure, it fluctuates up and down over time. These 
lead to the same fluctuation trend of σ ratio. And most values of the ratio are over 2, 
which means the concept organization and aggregation of MF are also loose. 

 

   
(a)     (b) 

 
(c) 

Fig. 4. The complexity evolution of MF ontology. All configurations are the same as figure 2. 

According to all graphs, we draw the conclusion that the MF is unsteadier than BP 
and CC from the view of evolution. And if viewed from the view of complexity, the 
BP is more complex than CC and MF.  



 Ontology Analysis on Complexity and Evolution Based on Conceptual Model 223 

5   Summary and Future Works 

In the future, we will continue work on the ontology complexity metrics and other 
ontology metrics. In this research, our metrics come mainly form the hierarchy in 
conceptual model. We may add more metrics form other sides of ontology. And upon 
these metrics, we have had some insights of semantic field of ontology. So, future 
research may include additional works for the metrics on ontology semantic ability. 

References 

1. http://www.geneontology.org/ 
2. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmr, and T. 

Risch. Edutella: a p2p networking infrastructure based on rdf. In Proceedings of the 
eleventh international conference on World Wide Web, pages 604–615. ACM Press, 2002. 

3. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 
284(5): 34-43, May 2001. 

4. A. Das, W. Wu, D. McGuinness, Industrial Strength Ontology Management', The 
Emerging Semantic Web, IOS Press, 2002. 

5. Sirin, E., J. Hendler and B. Parsia, 2003. Semiautomatic composition of web services 
using semantic description. Web Services: Modeling, Architecture and Infrastructure 
Workshop in Conjunction with ICEIS2003. 

6. Stojanovic L. and Motik B.: Ontology Evolution within Ontology Editors. In Proceedings 
of 13th International Conference on Knowledge Engineering and Knowledge Management 
2002, pp 53-62. Siguenza, Spain, 30th September. 

7. S. Staab, H.-P. Schnurr, R. Studer and Y. Sure, Knowledge Processes and Ontologies, 
IEEE Intelligent Systems. 16(1), Jan./Feb. 2001. Special Issue on Knowledge 
Management, 2001. 

8. Wand, Y. and Weber, R.. Research Commentary: Information Systems and Conceptual 
Modeling - A Research Agenda. Information Systems Research, 2002, 13 (4), pp. 363-
376. 

9. Corcho, O. & Gomez-Perez A. A road map to ontology specification languages. In 
Proceedings of the 12th International Conference on Knowledge Acquisition, Modeling 
and Management, Juan-les-Pins, France, 2000, pp. 80-96. 

10. A. Burton-Jones, V.C. Storey, V. Sugumaran, and P. Ahluwalia. Assessing the 
effectiveness of the daml ontologies for the semantic web. In Eighth International 
Conference on Applications of Natural Language to Information Systems, June 2003. 

11. Haining Yao, Anthony Mark Orme and Letha Etzkorn. Cohesion Metrics for Ontology 
Design and Application, Journal of Computer Science 1(1): 107-113, 2005 

12. Dazhou Kang, Baowen Xu, Jianjiang Lu, William C. Chu. "A Complexity Measure for 
Ontology Based on UML," 10th IEEE International Workshop on Future Trends of 
Distributed Computing Systems (FTDCS'04) pp. 222-228 

13. Idris Hsi, “Analyzing the Conceptual Coherence of Computing Applications Through 
Ontological Excavation”, PhD Thesis Proposal, May 13, 2004. 

14. Chris. Mungall, Increased complexity in the GO, http://www.fruitfly.org/~cjm/obol/ 
doc/go-complexity.html 



U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 224 – 231, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Distributed Execution of Workflows in the INB  

Ismael Navas-Delgado1, Antonio J. Pérez2, 
Jose F. Aldana-Montes1, and Oswaldo Trelles2 

1 University of Malaga, Computing Languages and Computer Science Department, 
29071, Malaga, Spain 

{ismael, jfam}@lcc.uma.es 
http://khaos.uma.es 

2 University of Malaga, Computer Architectures Department, 
29071, Malaga, Spain 

ots@ac.uma.es, aperezp@uma.es 
http://www.ac.uma.es  

Abstract. Our workflow platform offers a view of the different tools available 
as a single and uniform pool of services readily available for enhancing query 
processing. This proposal is based on an architecture for publishing biological 
data and services, and is designed to be a flexible client for making use of Bio-
MOBY servers, extending them with persistency of the information retrieved 
for each user. We also present in this paper some biological results, which have 
been obtained by taking advantage of the proposed workflow execution system. 
This work has been developed and implemented in the National Institute for 
Bioinformatics (INB) in Spain (available at http://www.inab.org/MOWServ). 

1   Introduction 

A Web-based service facilitates access to remote resources promoting the develop-
ment and availability of highly diverse and specific tools. These new resource capa-
bilities are of special interest in the bioinformatics domain where a variety of  
databases and services are required in order to produce a more complete view of bio-
logical problems. Unfortunately, the common bioinformatics research field becomes 
hard to operate since it can involve finding appropriate web services by collecting 
URLs of the useful ones, selecting the most popular or suitable ones, getting familiar 
with their specific interfaces (e.g. see the very popular sites like NCBI, EBI, ExPASy, 
etc.), copying and pasting data, manually selecting and combining partial results, and 
scheduling and pipelining tasks by-hand. Thus, the main component of a bioinfor-
matician’s daily work is to carry out a set of simple activities which they usually per-
form using a diverse set of tools for solving a problem. This implies interacting with 
different interfaces and storing partial results for use in another tool. This manual 
interaction with services is costly and error-prone. 

To take full advantage of the amount of information available, researchers need to 
be able to access, link, combine, and query these biological data sets easily and effi-
ciently, and then to integrate the significant number of tools which use these data 
sources. To address this problem, a growing effort is being made to develop common 



 Distributed Execution of Workflows in the INB 225 

data-interchange methods, common reference ontologies and automated query en-
gines. Data and service integration has become of particular interest in bioinformatics 
due to the potential payoff in terms of improved efficiency. Several groups have ad-
dressed general solutions for such integration infrastructures: TAMBIS [1], Model-
Based Mediation [2], BioDataServer [3], PAT [4], BioBroker [5] and BioMoby [6]. 
However, these infrastructures have to be inter-related and this process requires hu-
man interaction, thereby unnecessarily increasing the time required to obtain a solu-
tion to the proposed problem, when the process could in fact be automated. 

Thus, a workflow-based system is very useful when the tasks that the user needs to 
solve are (as is usually the case) predefined and relationships between the tasks are 
well known. Our proposal provides an execution environment for related tasks, so that 
users can develop a workflow defining a set of related tasks in order to solve a spe-
cific problem, and subsequently execute the workflow with specific inputs. This proc-
ess can be repeated several times with different inputs in order to derive biological 
conclusions. 

In this paper we focus on the description of a workflow management environment 
that provides a set of applications for storing, executing and monitoring workflows 
defined by means of XML files in the Scufl [7] representation language. Our proposal 
extends this approach with the capability of using authentication-based systems, in 
which data confidentiality is ensured. Besides the use of a scheduler, which has statis-
tics about the services published in the system, our proposal offers an optimized exe-
cution process, optimized error handling and standardized view of data.  

Our proposal is presented in Section 2, each element being described in detail.  
Section 3 illustrates a workflow example performing a homology search and a phy-
logenetic study. It will also be shown how by using this workflow we can obtain  
biological knowledge about a family of proteins. Finally we round off with some 
conclusions and future work. 

2   System and Methods 

The National Institute for Bioinformatics (INB) in Spain has addressed the integration 
problem in bioinformatics through the design of a simple, dynamic and extensible 
platform in order to represent, recover, process, integrate and discover knowledge. 
The description of biological input/output objects is coordinated and standardized by 
means of an object-ontology in such a way that services can communicate with each 
other, wiring natural bioinformatics workflows. Automatic interfaces and help system 
builders have been incorporated into the architecture to make it more cohesive and to 
facilitate user communication. Beyond traditional bioinformatics platforms, data per-
sistence system, user management and scheduling abilities have created a new genera-
tion of bioinformatics platforms. 

The INB system architecture is organized at three main levels: (a) a web-interface 
at the top of the architecture facilitates communication between the user and the plat-
form (b) the architecture core including the services’ interface though bioMOBY API; 
and (c) at the bottom of the scheme the services’ providers. 

A web interface manages user sessions with an authentication mechanism.  
An automatic web interface builder is able to dynamically build on interfaces for 



226 I. Navas-Delgado et al. 

browsing data objects, services and namespaces (associated with data containers). The 
list of services is displayed as a browsable tree from which the user gains access to 
procedures. In the same way automatic interfaces are built foequested, the system 
provides notification about the progress status of services, -including historical re-
cords of executed tasks-, together with the relationships between input data, service 
applied and output data. Frequently output data become the input for new services. 
The GUI provides a specific list of suitable services that can be applied. 

  

 
Fig. 1. Data and Process Flow for using the INB workflow management platform. Dark nodes 
are external applications or services, and the other ones are internal processes. 

In this environment, the process to define and execute workflows that we propose 
is composed of the following steps (see Figure 1): 

• To define workflows manually (writing an XML Scufl file) or using a graphical 
tool for this language, like Taverna Workbench [7], which allows users to graphi-
cally describe the services to be executed and how they are related (Section 2.1). 

• To store user or generic workflows in the INB platform making use of the provided 
web interface (Section 2.2). 

• To specialise workflows by defining their inputs, specific values for simple data 
objects or links to existent complex BioMOBY objects (Section 2.3). 

• To execute workflows, taking the inputs and executing services as soon as their 
inputs are available (Section 2.3). 

• To monitor the execution, by providing information about the changes in the status 
of the processors and data results (Section 2.3). 

2.1   Defining Workflows 

The execution of a set of related services can be done by selecting services and exe-
cuting them making use of user data. However, an automated mode should be pro-
vided in the form of a workflow execution platform. These workflows have to be 
described in a well-known language for representing workflows in order to increase 
the utility of the proposed platform. Ultimately the workflow utility depends on the 
quality of the experiments designed by researchers. Thus, the main task of this kind of 
tool is to help users and to make the use of existing tools or services easier. 

The proposal for defining workflows in our platform is to take advantage of a well-
known representation language in the bioinformatics area. Taverna provides a graphi-
cal interface capable of dealing with BioMOBY services. Thus, after studying several 



 Distributed Execution of Workflows in the INB 227 

proposals for building workflows, we have adopted Scufl [7] because it is a well-
known workflow XML-based representation language. This language includes a com-
plex structure for defining workflows which could make use of generic web services, 
BioMOBY services, scripts, etc. 

A workflow in the Scufl language includes several entities: Processors, Links, Co-
ordination Constraints, Sources and Sinks.  A workflow also contains additional in-
formation such as the title, author and LSID (of the workflow), which can be used to 
differentiate workflows and help users in the correct selection of the most appropriate 
one.  

Processors are the main elements of workflows because they represent the execu-
tion of the services. Processors can deal with generic web services, Soaplab services, 
Talisman services, sub-workflows, constant values or local functions and scripts, but 
a processor can also deal with a special type of web service, BioMOBY services. 
Links are the elements that connect outputs and inputs of processor executions. While 
sources are the inputs of workflows, sinks are the outputs. Finally, coordination con-
straints allow users to define conditions that must be fulfilled for executing certain 
processors. 

Our goal is to provide support for loading and executing workflows composed of 
BioMOBY services published in the INB platform. However, we consider that it is 
important to offer a full solution that could make use of any kind of service, and the 
system should deal with the services of the INB and execute them, and delegate the 
execution of other types of services. An important problem here is that services of 
other MOBY centrals make use of other ontologies. Thus, in order to connect the 
services of two centrals, they have to be defined by means of the same concept. 

2.2   Internal Representation and Storage 

Once developed and represented by means of an XML file (using the Scufl language), 
a workflow can be executed. In order to provide a quality system it is necessary to 
offer a user authentication system and data persistency for all data retrieved for each 
processor. In addition, users must have available the use of services that require a 
long time to offer a result. 

The INB platform offers an interface for loading, executing and monitoring the 
execution of workflows (see Section 2.3). This platform offers a persistent database to 
store workflows in order to promote their use and their analysis. This database con-
tains a set of tables that can be queried to retrieve workflow information or for execut-
ing the workflow (Workflow, Processor, Link, Source and Sink). In the current  
version we offer the capability of executing BioMOBY services and scripts related 
with them, like those for getting the inputs and showing the outputs (Cre-
ate_moby_data and Parse_moby_data). 

The database tables designed include all the elements necessary to define a work-
flow (composed of BioMOBY services), so that there is no loss of information in the 
storage process. Furthermore, the use of constraints allows correct insertion of data in 
the database to be verified, and additionally it will be possible to rebuild a workflow 
(in XML format) from the database. Thus, if a workflow is published and shared 
between different users, all of them can retrieve the XML description of the workflow 



228 I. Navas-Delgado et al. 

in order to make use of it. There are three types of workflows: Generic, User and 
Specialized. 

User workflows are loaded taking advantage of the web interface, and are avail-
able only to this particular user. On the other hand, Generic workflows are loaded 
by the administrator by means of a similar interface. Since the “generic” workflows 
are shared by all users, an intermediate quality control is established to ensure the 
performance of the workflow. Workflows executed by users are only available to 
their owners. Thus, each user preserves the confidentiality of his/her data and ex-
periments. On the other hand, the administrator can create Generic Workflows that 
will be shared by all users of the system. In this case, the administrator tests and 
verifies workflows submitted by the users, who have to provide a long description 
(such as documentation) to facilitate the use of a generic workflow by final users. 
This way of adding Generic Workflows provides a quality (and well documented) 
set of workflows. 

Finally, specialized workflows are those that have been prepared to be executed by 
defining their inputs and parameters. 

When a workflow is loaded, it is parsed, its elements (processors, links, sinks and 
sources) are stored in the database and a copy of the XML document (describing the 
workflow with Scufl language) is uploaded onto the INB web server. Additional in-
formation is added to workflows in order to improve the documentation of loaded 
workflows: Name, Short Description and an optional Long Description (as documen-
tation of the workflow). This information is essential if we want to share our work-
flows with other people, because the title of a workflow (information included inside 
the XML description) is usually insufficient. 

2.3   Executing and Monitoring Workflows 

The INB provides a web interface for searching workflows (user and generic work-
flows), which shows a short description of each workflow (so users have a prelimi-
nary description that could be useful for selecting a service). Once a workflow is 
selected from the list, the next step is to define the inputs in order to execute it. Thus, 
if the input is a basic BioMOBY object, like String, Integer, Float or Datetime a text 
box is shown for a value to be introduced. However, if the input is a complex type, 
the user has three options: to select a stored BioMOBY object that is compatible with 
the input type, to upload an object stored in a local XML file or to create a new object 
of the required type. In order to create a bioMOBY object the platform offers a ge-
neric creation service, which analyses the structure of the object type and provides a 
web form for creating an object. 

When a user inserts or selects the input/s, the system stores information about the 
workflow to be executed. Thus the inputs are stored for execution and future use. In 
addition, a set of internal tasks are created (one for each processor), and related proc-
essors imply that the corresponding tasks have the output of the predecessor as input. 
Relationships between the tables designed are quite similar to the relationships be-
tween the tables for storing the workflows, though the sources include a field for 
storing the value inserted by the user. 



 Distributed Execution of Workflows in the INB 229 

 

Fig. 2. Monitoring the Execution of a Workflow. Each row contains a service (processor) in the 
workflow and its state. Finished services (2397 and 2396) include links to their results. Then, 
the services in execution can be executed several times if an error occurs. Finally, the other 
services indicate which service is being waited for. Thus, the execution process of a workflow 
shows a set of services that are changing their status right up until the end of the execution, 
when results can be analyzed. 

The created tasks (that are related with the processors by means of the IdTask 
field) are executed by the system scheduler, which does not execute a task until the 
required input has been created (the objects have a state that indicates whether an 
object has been created or not). Thus, synchronization between processors is ensured.  

The workflows, which a user has executed, can be monitored by means of a web 
interface that shows the workflow execution process on the web page. This monitor-
ing tool also includes all the tasks created, their state: Waiting, Finished or Error, and 
their outputs. Thus, the partial and final results can be examined in order to extract 
biological conclusions to the workflows executed.  

This first approach shows the execution process in a textual mode, but in future 
work we are planning to offer a graphical view of the execution, which will provide 
better comprehension of the data flow. 

3   Workflow Results 

The current INB interface presents a set of services, which carry out different analysis 
on biological data. These different tools can be automatically applied to a set of data 
to produce a complete analysis to solve biological problems using the same platform. 
To this end, we present a practical workflow to solve a phylogenetic study (this work-
flow is available in the platform as a generic workflow) using an amino acid sequence 
as the starting point (Figure 3). A homology search is conducted (Blast service) to 
obtain similar sequences with a common evolutionary history. Output from this ser-
vice contains a set of putative homologous sequences to the query. A new service is 
linked (Clustalw from Blast) to build-up a multiple alignment with the most similar 
sequences reported (these sequences are previously extracted with getBestHits-
FromBlast, including an e-value threshold). Finally a phylogenetic tree is obtained  
 



230 I. Navas-Delgado et al. 

    
Fig. 3. Homology search and phylogenetic study workflow and its output showing the rela-
tioships among the protein sequences related to SMN_HUMAN with the parameter ‘thresh-
old’from runCreateTreeFromClustalw service fixed to one. The SMN proteins from different 
organisms appear to be related to human ones, and other proteins containing tudor domain and 
old related SMN proteins appear more similar to fish SMN (SMN_BRARE). Interesting issues 
are observed in this result regarding maternal tudor protein from Drosophila melanogaster (see 
text). 

using CreateTreeFromClustalw service highlighting the relationships among all the 
sequences. 

This workflow has been tested with the human survival motor neuron protein 
(SMN; Accession Number: Q16637) running against a SWISS-PROT database and a 
relaxed e-value was used as a threshold to select distantly related homologous hits and 
to carry out the multiple alignment. Interesting results are reported such as the fact 
that several related sequences show a common domain identified as the 'Tudor do-
mains', first identified as fragment repeats in Drosophila melanogaster [8]. As a result 
of our analysis this large Drosophila protein (TUD_DROME) appears separated from 
the remaining proteins in the phylogenetic tree (Figure 3) suggesting a relationship 
with splicing factors (SF30 proteins). In short, these results can conclude that the 
Drosophila protein, which is required during oogenesis for the formation of primor-
dial germ cells and for normal abdominal segmentation, is a splicing factor assisting 
this process. 

4   Conclusions 

In this document we present a client engine based on semantic interconnection con-
cepts. The platform is able to integrate into workflows various processing services 
developed by different users and groups through a web-based interface. This expands 
the functionality of current services, enabling the easy incorporation of new proce-
dures to customize the system for specific concerns.  

The support for loading, executing and monitoring workflows is based on a very 
common and well-defined representation language. Our proposal extends current tool 
with the capability of using authentication-based systems, in which the confidentiality 
of the data is ensured. In addition, the use of a scheduler based on statistics about the 
services stored in the system improves the efficiency in the use of computational 



 Distributed Execution of Workflows in the INB 231 

resources. Another important advantage of this system is that data obtained from the 
execution of a workflow can be used to execute other services and even workflows.  

Acknowledgements 

This work has been partially supported by grant “GNV5-Bioinformática Integrada” 
from Genoma-España and the Spanish MEC Grant TIN 2005-09098-C05-01. 

References 

1. Stevens, R. D., Baker, P. G., Bechhofer, S., Ng, G., Jacoby, A., Paton, N., Goble, C. A., 
Brass, A. (2000) TAMBIS: Transparent Access to Multiple Bioinformatics Information 
Sources. Bioinformatics, 16:2 PP. 184-186. 

2. Ludäscher, B., Gupta, A., Martone, M.E. (2003) A Model Based Mediator System for Sci-
entific Data Management. In Z. Lacroix and T. Critchlow(eds.), Bioinformatics: Managing 
Scientific Data, pp. 335-370, 2003. 

3. Lange, M., Freier, A., Scholz, U., Stephanik, A. (2001) A computational Support for Access 
to Integrated Molecular Biology Data. 

4. Gracy, J., Chiche, L. (2005) PAT: a protein analysis toolkit for integrated biocomputing on 
the web. Nucl. Acids Res. 2005 33: W65-W71. 

5. Aldana, J.F., Hidalgo-Conde, M., Navas, I., Roldán, M.M., Trelles, O. (2005) Bio-Broker: A 
biological data and services mediator system. IADIS International Conference, Applied 
Computing 2005, Algarve, Portugal, 22-25 February 2005. Pags. 527-534. 

6. Wilkinson, M.D., Gessler, D., Farmer, A., Stein, L. (2003). The Bio-MOBY Project Ex-
plores Open-Source, Simple, Extensible Protocols for Enabling Biological Database Inter-
operability. Proceedings Virtual Conference Genomic and Bioinformatics (3):16-26. (ISSN 
1547-383X). 

7. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M. Carver, T., Glover, 
K., Pocock, M.R., Wipat, A., Li, P. (2004) Taverna: A tool for the composition and enact-
ment of bioinformatics workflows Bioinformatics Journal 20(17) pp 3045-3054, 2004 

8. Ponting C.P. (1997) Tudor domains in proteins that interact with RNA. Trends Biochem. 
Sci. 22: 51-52 (1997). 



 

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 232 – 239, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Knowledge Networks of Biological and Medical Data: 
An Exhaustive and Flexible Solution to Model Life 

Science Domains 
(Systems Paper) 

Sascha Losko, Karsten Wenger, Wenzel Kalus, Andrea Ramge, 
Jens Wiehler, and Klaus Heumann 

Biomax Informatics AG, Lochhamer Str. 9, 82152 Martinsried, Germany 

Abstract. The huge amount of unstructured information generated by academic 
and industrial research groups must be easily available to facilitate scientific 
projects. In particular, information that is conveyed by unstructured or semi-
structured text represents a vast resource for the scientific community. Systems 
capable of mining these textual data sets are the only option to unveil the 
information hidden in free text on a large scale. The BioLT Literature Mining 
Tool allows exhaustive extraction of information from text resources. Using 
advanced tagger/parser mechanisms and topic-specific dictionaries, the BioLT 
tool delivers structured relationships. Beyond information hidden in free text, 
other resources in biological and medical research are relevant, including 
experimental data from “-omics” platforms, phenotype information and clinical 
data. The BioXM Knowledge Management Environment efficiently models 
such complex research environments. This platform enables scientists to create 
knowledge networks with flexible workflows for handling experimental 
information and metadata, including annotation or ontologies. Information from 
public databases can be incorporated using the embedded BioRS Integration 
and Retrieval System. Users can navigate and modify the information networks. 
Thus, research projects can be modeled and extended dynamically. 

1   Introduction 

Today, the life sciences generate an ever-increasing amount of information. This is 
mainly driven by two factors. First, the life sciences are highly complex fields of 
research. There are millions of enzymes, genes, chemical compounds, diseases, 
species, cell types and organs that interact and are related in many different ways. 
Second, new experimental methods are continuously developed; as their throughput 
increases, the amount of raw data generated increases with overwhelming speed. 

For information technologies, the challenge remains to support scientists in the 
identification of relevant information, the integration of this information in specific 
“knowledge bases” and the formalization of this knowledge across multiple scientific 
domains to facilitate hypothesis generation and validation (and, therefore, the 
generation of new knowledge). Information technology (IT) solutions are needed to 



 Knowledge Networks of Biological and Medical Data 233 

 

support the knowledge generation cycle [1, 2] to ultimately gain an adequate 
understanding of whole biological systems. Systems Biology is a new field of 
research that has an intrinsic hierarchical nature, presenting a multiplicity of 
applicative fields that must be interconnected to give a complete description of the 
fundamental biological system (E-cell, virtual organs). 

1.1   From Information to Knowledge 

The most important source to collect a comprehensive set of relevant information 
available to the scientific community is the text body of published papers. Although 
this body of information is mostly unstructured, text-mining techniques have been 
developed to analyze text syntax and semantics. Text mining may be the most 
important answer to the mass production of scientific literature. It is, however, 
confronted with the same phenomena as Natural Language Processing (NLP): 
complexity and ambiguity. Natural language is diverse and can express the same 
thought in many syntactically different ways. Ambiguity arises on all levels of natural 
language: lexical ambiguities such as “bank”, syntactical ambiguities such as “the 
man watches the girl with the telescope”, and semantical ambiguities such as “every 
man loves a woman”. Complexity and ambiguity often come together and make the 
resolution of the underlying meaning almost impossible, even for the human mind. 

With respect to database integration, solutions to make all information accessible 
exist. A common approach is based on flat-file indexing, which emerged due to the 
flat-file origins of most biological databases. SRS [3] and the BioRS Integration and 
Retrieval System (http://www.biomax.com) are prominent examples of such technical 
solutions. Relational database management systems (RDBMS) are also widely used, 
with Oracle being one of the most popular RDBMS in the life science domain. 

One issue in the integration of multiple databases is mapping the data semantics. A 
simple example is a case where a protein identifier is designated “prot_id” in one 
database, but is designated “id” in another. This problem is rather easy to solve. Both 
identifiers designate semantically identical entities (the protein) by semantically 
identical attributes. Common data access systems implement mechanisms to provide a 
“unified” search semantic across databases using this simple mapping technique. 
However, this technique is insufficient to describe, for example, the relationship 
between a protein and a protein complex in which the protein is likely to participate. 
Here, the semantic of the relationship has to be explicitly described: “Protein A 
participates_in_complex Complex B”. In this way, diverse information, such as 
molecular processes, disease phenotypes or clinical information about patients, can be 
modeled as complex semantic networks. 

The above Protein-Complex relationship example illustrates a simple approach to 
formalized knowledge. Though the actual definition of “knowledge” is indistinct, 
knowledge can be seen as the awareness of a validated interconnection of details, 
which, in isolation, are of lesser value. That “Protein A participates_in_complex 
Complex B” should therefore be supplemented by evidence why Protein A 
participates in Complex B. That evidence is annotation of the relationship. If it is 
possible to provide evidence for a defined relationship from different, independent 
sources (e.g., multiple scientific experiments based on various methods), the validity 
of the relationship is strengthened. For both Protein A and Complex B, further 



234 S. Losko et al. 

 

validated relationships with other “elements of a scientific domain” (such as 
compounds or diseases) may exist, which broaden the overall knowledge. With these 
elementary concepts, “elements”, “relations” and “annotation”, it becomes possible to 
formalize huge networks of knowledge. 

1.2   This Study 

In a proof-of-principle project implementing a simple knowledge-generation process, 
we have chosen to analyze PubMed abstracts, mining for co-occurrences of gene or 
protein names with cancer-related disease terms using text-mining techniques. 
Although cancer is a complex field of research with large numbers of published 
papers, a couple of comprehensive review articles summarize the more important 
genes responsible for the genesis of various cancers [4]. Qualitatively, we based the 
validation of our text-mining methods on these review articles. 

All identified Gene-Cancer relationships were additionally analyzed for their 
association with certain compound or drug terms. The resulting data set was imported 
into the BioXM Knowledge Management Framework and a network of information 
was structured by, for example, classifying the disease term dictionary using the “NCI 
thesaurus” ontology [5]. Other ontologies such as the FunCat catalogue [6] and GO 
[7] were used to classify the molecular function of all identified genes or proteins. 
Additional information was mapped to the genes by integrating external public 
databases. 

The result is a comprehensive knowledge base with a high-value core of 
information that can be extended with diverse proprietary information. 

2   Methods 

We have built a software environment composed of three core components. The 
BioRS Integration and Retrieval System forms an access layer for the integration of 
public databases such as MEDLINE. The BioLT Literature Mining Tool identifies 
information in the MEDLINE text body by applying text-mining techniques. The 
results of the text-mining process are imported into the BioXM Knowledge 
Management Environment, and their semantics are formalized and integrated into 
larger networks of knowledge. 

2.1   Linguistic Text Analysis 

The BioLT Literature Mining Tool is text-mining software that combines linguistic 
core functionalities with the power of a genuine retrieval component (BioRS 
Integration and Retrieval System) and controlled vocabularies. The user can take 
advantage of an augmented Boolean query language that allows exhaustive retrieval 
of entire text databases. 

The BioLT tool can analyze any text corpus using several parsing mechanisms. A 
tagger records dictionary occurrences with a certain degree of fuzziness, such as dash 
elimination. The BioLT dictionary resource currently contains up to 20 different 
vocabularies and almost one million tokens (i.e., entries). A phrase parser recognizes 
chunks of tokens. Specialized mechanisms scan the text for gene name and 



 Knowledge Networks of Biological and Medical Data 235 

 

polymorphism patterns. An acronym parser associates abbreviations of a certain kind 
with the likely expansions in the text. The parsing results, with indications of text 
positions, phrasal status, etc., go into a relational database. A separate index of the full 
text is created in the BioRS system. Queries to the BioLT tool are first issued to the 
BioRS system and the results are merged with the relational database. A number of 
standard weighting algorithms are available to rank the final results. 

2.2   Integration of Public Databases  

The BioRS Integration and Retrieval System, a data retrieval system, allows the 
integration of relational and flat-file databases into a common, homogeneous 
environment. The databases to be integrated, both public and proprietary, are 
organized differently according to storage (flat-file vs. relational) and format (EMBL 
format, XML format, etc.). The BioRS software allows the rapid retrieval of data 
(e.g., sequence, structure and literature) from multiple databases in parallel. 

Using HTML-based query forms, searches can be as simple or complex as 
necessary using a sub-query option for search-result refinement. The BioRS system 
also supports queries for phrases and search-term synonyms. For example, a thesaurus 
of gene names may contain all corresponding alternative names for each gene. When 
searching a database for a specific gene name, entries containing synonyms of the 
gene name will also be retrieved. By mapping semantically equivalent attributes of 
different databases to a single BioRS attribute used for retrieval, the same information 
entities can be found in parallel in all integrated databases. Searchable cross-
references between related information in different databases ensure complete 
information access. 

The retrieval functionality can be incorporated into proprietary programs or scripts 
allowing for transparent access to entries in databases. The BioLT Literature Mining 
Tool and the BioXM Knowledge Management Environment use an embedded version 
of the BioRS system as middleware to access external databases. 

2.3   Knowledge Management Software 

The BioXM Knowledge Management Environment is designed for the aggregation of 
information and the semantic modeling of scientific processes. A particular area of 
scientific interest can be modeled as a network of related elements. The user can 
define different element types and relation classes. For example, elements of type 
“gene” or “protein” can be linked using a relation of type “Gene Regulation” or 
“Protein-Protein interaction”. Sub-networks, called contexts, which allow biological 
pathways and processes to be organized as parts of the overall network of knowledge, 
can be defined. Relationships between contexts and other “semantic objects”, such as 
elements, can be established. This allows efficient modularization and abstraction of 
knowledge. All “semantic objects” (such as elements, relations, contexts or ontology 
concepts) can be annotated. Annotations are form-based and support hierarchical 
organization of information (nested annotation forms). Multiple semantic objects can 
share annotation to imply relationships. The BioXM system supports the 
conceptualization of entire areas of interest using arbitrary ontologies. The taxonomy 
of “is_a” relationships, which formally structure the ontology, can be used to infer 



236 S. Losko et al. 

 

facts and abstract queries in the BioXM system. The software provides graphical 
browsing through the network and an advanced query builder for guided construction 
of complex queries with a natural-language-like syntax. 

The BioXM Knowledge Management Environment allows access to all public 
databases integrated by the BioRS Integration and Retrieval System. External 
database entries can serve as either “virtual” semantic objects or “read-only” 
annotation of semantic objects. Although the information remains external, the 
database entries used as “virtual semantic objects” can be organized in the project 
tree, can become part of a network, and can be annotated by the user in the same way 
as any other semantic object in the BioXM system. 

3   Workflow Results and Discussion 

In the first step, PubMed abstracts were analyzed for co-occurrences of gene or 
protein names with cancer-related disease terms using the BioLT text-mining 
technology. We used a recent review article [4] to provide a preliminary verification 
of the quality of our predictions. All identified genes and proteins were then analyzed 
for their associations with compound or drug terms covered by the BioLT compound 
dictionary. The resulting data set was imported into the BioXM Knowledge 
Management Framework and the information network was structured by classifying 
the disease term dictionary using the “NCI thesaurus” ontology [5]. Other ontologies 
such as the FunCat catalogue [6] and GO [7] were used to classify the molecular 
function of all identified genes or proteins. Additional information was mapped to the 
genes by integrating external public databases. 

3.1   Text-Mining Process 

The next step in the knowledge-generation process was to find all relationships 
between genes or proteins and cancer-related disease terms, based on 30 years of 
MEDLINE abstracts starting in 1975. For all genes found with cancer associations, 
we also mined the MEDLINE abstract for compound- or drug-term associations. 

Text mining provides a shortcut through the complexities of NLP and tries to guess 
the best results. Ambiguity, however, remains and there is no simple solution to deal 
with it. The following example shows the different spellings and meanings the gene 
symbol “psp” has in the MEDLINE corpus (table threshold is set to 10 occurrences). 

Nine protein names (from the 33 acronym extensions of “psp”) generate several 
hundreds of hits, a fraction of the total number of 7081 occurrences for “psp” in the 
complete text corpus. A substantial gap of 1245 occurrences remains unassigned with 
our approach. In addition, the clearly assigned protein names leave nine different 
meanings for the symbol “psp”. One way to deal with this ambiguity is to detect and 
record the information for the user of the text-mining system. 

3.2   Preliminary Quality Assessment of the Text-Mining Results 

As a benchmark, the BioLT co-occurrence results were compared to a manually 
curated list of “all major pathways and hereditary cancer predisposition types” each 
 



 Knowledge Networks of Biological and Medical Data 237 

 

Table 1. The following example shows the different spellings and meanings the gene 
symbol “psp” has in the MEDLINE corpus (table threshold is set to 10 occurrences). 
The intended gene meanings are in bold font.  

Acronym expansion Occurrences Acronym expansion Occurrences 
progressive supranuclear palsy   1704 plasmatocyte spreading peptide  23 
- (no expansions found)  1245 phosphoserine phosphatase  23 
paralytic shellfish poisoning  271 prostate secretory protein  21 
pancreatic stone protein  128 paralytic shellfish poisons  20 
primary spontaneous 
pneumothorax  

122 period called pseudopregnancy  19 

parotid secretory protein  114 plasma protein  18 
Pancreatic spasmolytic 
polypeptide  

107 phage-shock protein  13 

polysaccharide peptide  58 photostimulable storage phosphor  12 
paralytic shellfish poison  58 progressive supranuclear palsy  12 
postsynaptic potential  55 posterior probability  11 
perchloric acid-soluble protein  43 penicillin-susceptible pneumococci  11 
phenyl saligenin phosphate  42 phage-shock-protein  11 
Photostimulable phosphor  35 polysaccharide of spirulina platensis 10 
polystyrene particles  33 premonitory sensory phenomena  10 
phage shock protein  33 parasitism-specific protein  10 
peak systolic pressure  28 post-suppression period  10 
postsynaptic potentials  26   

related to one of 57 representative predisposition genes (Vogelstein and Kinzler, 
2004). With 100% recall, all 57 genes and 57 cancer types were represented in the 
BioLT dictionaries for genes/proteins and diseases. Ninety-five percent (95%) of the 
relationships were ranked in the top three results of up to thousands of hits. For the 
remaining three genes, the corresponding diseases were found in the fourth and fifth 
positions. If, for example, one compares the relationships between the protein 
PDGFRA and 81 co-occurring disease terms from the BioLT disease dictionary with 
the disease relation “familiar gastrointestinal stromal tumors” noted in the publication 
above, the following four co-occurrences are presented at the top of the results in 
BioLT: hypereosinophilic syndrome (hes) (13 hits), gastrointestinal stromal tumors 
(19 hits), systemic mast cell disease (7 hits), and systemic mastocytosis (5 hits). 

After the qualitative assessment of text-mining results, it is necessary to provide 
the possibility to manually validate and annotate results further. To base a decision-
making process on this kind of automatic result, the information needs to be validated, 
not only by checking the original text source, but also by reviewing the findings in the 
context of an expanded knowledge base. 

3.3   Information Integration 

There were three main objectives in integrating the automatically derived text-mining 
results in the knowledge-generation process. A data model based on “Gene-Disease” 
and “Gene-Compound” relationships was established and the data was imported. The 
sentences were added to the appropriate relationship as annotation to provide 
evidence. The number of sentences found for each relationship gives a first, rough 
estimation of the validity of the particular relationship. 



238 S. Losko et al. 

 

Further annotation forms were created to allow user-reviewed validation of the 
relationships. The annotation forms used several attributes to describe the nature of 
the evidence. An evidence ontology [8] was used as a controlled vocabulary to 
describe the evidence in a structured way and facilitate data mining. 

 

 

Fig. 1. Visualization of cancer terms and their classification using the “NCI thesaurus” 
ontology: PDGFRA was found to be associated with the disease “EGIST”, which is a 
synonymous term for the ontology concept “Extragastrointestinal Gastrointestinal Stromal 
Tumor”. That concept is derived from “Gastrointestinal Stromal Tumor”, which itself has 
synonymous terms that were found to be associated with the gene PDGFRA. The manually 
annotated evidence codes [8] for the automatically generated relations are partly displayed. 

 

Fig. 2. Query Builder: This example query searches for all GO-inferred plasma membrane 
proteins associated with all “gastrointestinal” cancer-related diseases 

The cancer terms were mapped to the “NCI thesaurus” ontology [5] (Fig. 1) to 
enable inferred searches for disease concepts. Gene-specific information was added 
by mapping the gene names dictionary to the EntrezGene database, integrated with 
the BioRS system. Knowledge provided by the KEGG and PubChem databases adds 
information about metabolic processes. The core data model of “Gene-Disease” and 
“Gene-Compound” relationships was extended with relations to functional ontologies 



 Knowledge Networks of Biological and Medical Data 239 

 

such as GO [7] and the FunCat catalogue [6]. In this way, gene functionality in 
complex queries can be inferred, as shown in Fig. 2. 

The concepts implemented by the BioXM Knowledge Management Environment 
are generic and flexible. Input from most scientific domains can be adapted to the 
requirements of specific projects easily. The BioXM system facilitates collaboration 
of experts on a project-specific data set and allows reviewing, modifying, editing and 
commenting on a core set of information. Multiple sources of information can be 
integrated to be mined for data, so that the resulting greater network of information 
provides value well beyond the originally intended scope of the project. 

References 

1. Lazebnik, Y., Can a biologist fix a radio?--Or, what I learned while studying apoptosis. 
Cancer Cell, 2002. 2(3): p. 179-82. 

2. Searls, D.B., Data integration: challenges for drug discovery. Nat. Rev. Drug Discov., 
2005. 4(1): p. 45-58. 

3. Etzold, T., A. Ulyanov, and P. Argos, SRS: information retrieval system for molecular 
biology data banks. Methods. Enzymol., 1996. 266: p. 114-28. 

4. Vogelstein, B. and K.W. Kinzler, Cancer genes and the pathways they control. Nat. Med., 
2004. 10(8): p. 789-99. 

5. Hartel, F.W., et al., Modeling a description logic vocabulary for cancer research.  
J. Biomed. Inform., 2005. 38(2): p. 114-29. 

6. Ruepp, A., et al., The FunCat, a functional annotation scheme for systematic classification 
of proteins from whole genomes. Nucleic Acids Res., 2004. 32(18): p. 5539-45. 

7. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology 
Consortium. Nat. Genet., 2000. 25(1): p. 25-9. 

8. Karp, P.D., et al., An evidence ontology for use in pathway/genome databases. Pac. Symp. 
Biocomput., 2004: p. 190-201. 

 



On Characterising and Identifying Mismatches in
Scientific Workflows

Khalid Belhajjame, Suzanne M. Embury, and Norman W. Paton

School of Computer Science
University of Manchester

Oxford Road, Manchester, UK
{khalidb, embury, paton}@cs.man.ac.uk

Abstract. Workflows are gaining importance as a means for modelling and en-
acting in silico scientific experiments. A major issue which arises when aggre-
gating a collection of analysis operations within a workflow is the compatibility
of their inputs and outputs: the analysis operations are supplied by independently
developed web services which are likely to have incompatible inputs and outputs.
We use the term mismatch to refer to such incompatibility. This paper charac-
terises the mismatches a scientific workflow may suffer from and specifies map-
pings for their resolution.

1 Introduction

Scientific workflows are gaining considerable momentum as a mechanism for specify-
ing and automating the execution of scientific experiments [1,10]. During the design of
a scientific workflow, the designer’s focus is on selecting and composing the analysis
operations that will carry out the work of the experiment. Analysis operations are sup-
plied by third parties and as such it is often the case that their inputs and outputs are
incompatible with those of the other operations to which they must be connected. We
use the term mismatch to refer to such incompatibility. In order to resolve a mismatch,
the designer must expend some effort in discovering or implementing special operations
that can be plugged into the workflow at the point of incompatibility, and can transform
the data sets as necessary to resolve it.

Manual detection and correction of such mismatches is time-consuming and unre-
liable, and thus reduces the claimed benefits of scientific workflows in facilitating the
rapid specification of experiments. In this paper, we propose a classification of the kinds
of mismatches that can occur in data-driven workflows and derive the additional infor-
mation that must be captured about workflow operations if potential mismatches are to
be identified automatically. This additional information takes the form of annotations
on web service inputs and outputs, based on three separate ontologies.

The remainder of the paper is organised as follows. First, in Section 2, we formally
define scientific workflows. In Section 3, we describe the three additional ontologies
used for annotating operation inputs and outputs, and use them (in Section 4) to present
the mismatch classification and (in Section 5) to specify further annotations for transfor-
mation functions that characterise the kinds of mismatches they can address. Finally we
close the paper by comparing our work against existing works, and drawing conclusions
in Section 6.

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 240–247, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



On Characterising and Identifying Mismatches in Scientific Workflows 241

2 Scientific Workflows

A scientific workflow is a set of operations connected together using data links. For
the purposes of this paper, we define a scientific workflow SWf as SWf = 〈nameWf, OP,
DL〉, where nameWf is a unique identifier for the workflow, OP is the set of operations
from which the workflow is composed, and DL is the set of data links connecting the
operations in OP.

Operation. An operation op ∈ OP is defined as op = 〈nameOp, loc, in, out〉, where nameOP
is the unique identifier for the operation, loc is the URL of the web service that im-
plements the operation, and in and out are two sets representing the input and output
parameters of the operation, respectively.

Parameter. A parameter provides information on the data type of a given operation
input/output. It is defined by the pair 〈nameP, type〉, where nameP is the parameter’s
identifier (unique within the operation) and type is the parameter’s data type. In our
work, we assume an XML type system, so that parameter data types may be either
simple types, such as xs:string and xs:int, or complex types, built from simple ones.

Data Links. Let IN = ∪(op∈OP )op.in be the set of inputs of all the operations comprising
a scientific workflow, and OUT = ∪(op∈OP )op.out be the set of outputs of all its opera-
tions. The set of data links connecting the workflow operations must then satisfy the
following: DL ⊆ (OP × OUT) × (OP × IN). A data link relating the output o of the op-
eration op1 to the input i of the operation op2 is therefore denoted by the quadruple
(op1,o,op2,i).

3 Ontologies for Characterising Mismatches

Information on the types of operation parameters is usually easily available to scientific
workflow systems. For example, where operations are actually web services, the data
types can be extracted from the WSDL specification of the service. However, as we
have seen, not all mismatches are visible in the types of the connected parameters. In
order to automatically detect mismatches, the implicit information about the form and
role of operation parameters must be made explicit, just as the information about the
type of the parameter currently is. This additional information concerns the semantics
of the parameter (i.e. the real world entity to which the parameter corresponds), the
representation format used for the parameter over and above any data typing given to
it and the extent of the parameter (i.e. the set of possible values which the parameter
may take). For each of these, we must create an ontology of terms that can be used to
annotate services with the information required to detect mismatches.

An ontology is commonly defined as an explicit specification of a conceptualisa-
tion [4]. Formally, an ontology θ can be defined as a set of concepts, θ = {c1,. . .,cn}. We
use the following ontologies to annotate service parameters for mismatch detection.

Domain Ontology, θdomain. This ontology captures information about the application
domains covered by the operations, and enables us to describe the real world concepts to
which each parameter corresponds. An example of such an ontology is that developed



242 K. Belhajjame, S.M. Embury, and N.W. Paton

by the myGrid project describing the domain of molecular biology [9]. Typical concepts
from this ontology are ProteinSequence and MolecularWeight.

For the identification of mismatches, we assume the existence of a function domain(),
the signature of which is presented below. Given an operation and an input/output pa-
rameter, the function domain() returns the corresponding concept from the domain on-
tology.

domain: OP × (IN ∪ OUT) → θdomain

Representation Ontology, θrepresent. As in many other application areas, a variety of
different formats have been defined for representing the same kind of biological data
(i.e. data corresponding to the same domain concept). For example, a protein sequence
can be represented using Fasta format or Uniprot format or any of several other similar
formats. These formats can be represented using complex data types but at present it
is much more common for workflow operations to treat them as simple string objects
and to ignore their internal structuring. This is partly due to legacy design (since many
of the more popular biological web services were implemented before the development
of XML and its associated programming tools) and partly because current workflow
systems do not always have very rich type systems.

In order to detect mismatches in representation format as well as data type mis-
matches, it is necessary for services to be annotated according to the formats expected
and produced by their inputs and outputs. We therefore require an ontology of terms for
describing data formats. Such an ontology has already been designed by the myGrid
project [9].

We therefore assume the existence of a function represent(), with the signature pre-
sented below. Given an operation and an input or output parameter, the function repre-
sent() returns the corresponding concept from the representation ontology.

represent: OP × (IN ∪ OUT) → θrepresent

In order to compare two representation concepts for mismatch identification, we need
an additional binary comparison operator for concepts in θrepresent. We use the con-
tains() function, the signature of which is presented below, to describe the relationship
between these formats. Given two formats x and y, the function contains(x,y) is true if x
contains all the data content needed for creating an instance of y, and false otherwise.

contains: (θrepresent × θrepresent) → Boolean

Extent Ontology, θextent. The concepts of this ontology define the scope of possible
values of a given operation parameter. Although in general it is not possible to accu-
rately describe the extent of a parameter, it is the case that the relationships between the
extents of some web services is known in advance and can be used in detecting mis-
matches. For example, the TrEMBL database1 is known to be a superset of SwissProt,
whereas the various species specific gene databases are known not to overlap.

No ontologies currently exist for describing the extent of biological data sets, and we
have therefore constructed one ourselves. We assume the existence of a function extent()
for retrieving the extent of input/output parameters, with the signature:

1 http://www.ebi.ac.uk/trembl/



On Characterising and Identifying Mismatches in Scientific Workflows 243

extent: OP × (IN ∪ OUT) → θextent

In order to be able to compare extents, we use the function coveredBy(), the signature
of which is presented below. Given two concepts from the extent ontology, e1 and e2,
coveredBy(e1,e2) is true if the space of values designated by e1 is a subset of the space of
values designated by e2 and false otherwise.

coveredBy: (θextent × θextent) → Boolean

4 Characterising Mismatches

Using annotations of the form described in the previous section, we can automatically
detect a variety of forms of mismatch that go beyond simple data type mismatches.
We now present a classification of these mismatch types and define the criteria for
identifying each one.

Type Mismatch. refers to incompatibility in terms of data type between connected pa-
rameters. In order to be compatible, the data type of the output parameter must be the
same as or a subtype of the data type required by the input parameter. Formally, a data
link (op1,o,op2,i) ∈ DL suffers from a type mismatch iff2:

o.type �� i.type

Cardinality Mismatch. is a particular kind of type mismatch. For example, assuming a
type system in which the only means of forming collection types is an array constructor,
we can say that a data link (op1,o,op2,i) ∈ DL suffers from a cardinality mismatch iff:

(o.type = ArrayOf (i.type)) or
(i.type = ArrayOf (o.type))

ArrayOf(t) is a type. An instance of ArrayOf(t) is an array whose elements are t instances.

Domain Mismatch. refers to incompatibility in terms of semantic domain between con-
nected output and input parameters. In order to be compatible, the domain of the output
must be the same as or a sub-concept of the domain of the subsequent input. Specifi-
cally, a data link (op1,o,op2,i) ∈ DL suffers from a domain mismatch iff3:

domain(op1,o) �⊆ domain(op2,i)

For example, consider a data link (op1,o,op2,i) such that domain(op1,o) = DNA sequence
and domain(op2,i) = Protein sequence. According to the molecular biology ontology men-
tioned earlier [9], DNA sequence �⊆ Protein sequence, therefore, (op1,o,op2,i) suffers from
a domain mismatch.

2 The symbol �� stands for not a sub-type of.
3 The symbol �⊆ stands for not a sub-concept of.



244 K. Belhajjame, S.M. Embury, and N.W. Paton

Representation Mismatch. Two operation parameters, which belong to compatible se-
mantic domains, can be represented using different data formats. Representation mis-
match refers to the difference in terms of format between connected input and output
parameters, which are domain compatible. Specifically, a data link (op1,o,op2,i) ∈ DL
suffers from a representation mismatch iff:

(domain(op1,o) ⊆ domain(op2,i)) and
(represent(op1,o) �= represent(op2,i))

For example, suppose that domain(op1,o) = domain(op2,i) = Protein record, represent(op1,o)
= Uniprot record, and represent(op2,i) = Fasta record. The output and the input parameters
have the same semantic domain. However, they adopt different representations. We con-
clude that the data link suffers from a representation mismatch.

Content Mismatch. is a particular kind of representation mismatch, in which the for-
mats conflict in terms of data scope as well as in terms of pure representation—that
is, the format of the output carries less data content than is required by the format of
the subsequent input. Formally, a data link (op1,o,op2,i) ∈ DL suffers from a content
mismatch iff:

(domain(op1,o) ⊆ domain(op2,i)) and
(represent(op1,o) �= represent(op2,i)) and

(contains(represent(op1,o),represent(op2,i)) = false)

This situation is distinguished because it represents a particularly serious form of rep-
resentation mismatch. Even if we can find a web service that can perform the transfor-
mation between the two mismatched data formats, there may still be a problem with the
workflow, since the transformed output may not contain all the information expected by
succeeding operations. Note that we say there “may” be a problem with the workflow. It
is possible that the succeeding operation will only access those parts of the transformed
data structure that are contained within the initial data format, in which case there will
be no problem.

As an example of this, consider the data link (GetFasta,o,GetSequence,i). Here, rep-
resent(GetFasta,o) = Fasta record, and represent(GetSequence,i) = Uniprot record. This data
link suffers from a content mismatch, since a Fasta record does not contains all the
elements required for creating a Uniprot record instance: contains(Fasta record, Uniprot
record) = false. However, in reality, the GetSequence operation will only read the pro-

tein sequence parts of the Uniprot record supplied as its input, and therefore a simple
transformation between formats is sufficient to resolve the mismatch.
Extent Mismatch. refers to incompatibility in terms of the space of possible values be-
tween two connected output and input parameters. Specifically, a data link (op1,o,op2,i)
suffers from an extent mismatch if it does not suffer from a type mismatch, a domain
mismatch or a representation mismatch, but the extent of the input i does not cover the
extent of the output o. Formally, a data link (op1,o,op2,i) ∈ DL suffers from an extent
mismatch iff:

(o.type � i.type) and
(represent(op1,o) = represent(op2,i)) and

(domain(op1,o) ⊆ domain(op2,i)) and
(coveredBy(extent(op1,o),extent(op2,i)) = false)



On Characterising and Identifying Mismatches in Scientific Workflows 245

For example, consider a data link (op1,o,op2,i) such that domain(op1,o) = domain(op2,i)
= ORF. ORF stands for open reading frame. Suppose now that extent(op1,o) = FlyBase
and extent(op2,i) = SGD. FlyBase is a database that stores information on the genet-
ics and molecular biology of Drosophila. SGD is a scientific database of the molec-
ular biology and genetics of the yeast Saccharomyces cerevisiae. The two databases
are non-overlapping: none of the ORFs found in FlyBase are present in SGD (i.e. cov-
eredBy(FlyBase,SGD) = false). Therefore, (op1,o,op2,i) suffers from an extent mismatch.
Even though the parameters appear to match exactly in terms of domain, data type and
representation format, the workflow will still not be able to produce a result.

5 Annotation of Parameter Mapping Operations

The same ontologies that allow us to create annotations for identifying mismatches can
also support the annotation of transformation functions that can resolve them. In our
context, we refer to such functions as mappings, since they map from one parameter
type to another. In order to compare the available mappings with the identified mis-
matches, we annotate the mappings. Given a data link (op1,o,op2,i), which suffers from
a mismatch, a mapping is used for transforming the data produced by o to meet the
requirements of the input i. Formally, a mapping is defined as follows:

〈T1,T2,C1represent,C2represent,C1domain,C2domain,fmap〉

where T1 and T2 are data types, C1represent and C2represent are formats from the repre-
sentation ontology, and C1domain and C2domain are concepts from the domain ontology.
fmap: T1 → T2 is a function. Given an instance t1 of T1 that follows the format C1represent

and belongs to the domain C1domain, fmap (t1) returns an instance t2 of T2, which follows
the format C2represent and belongs to the domain C2domain. The extent of the mapping
function fmap () is specified by a pair (e1,e2), where e1, e2 ∈ θextent; e1 designates the
extent of the domain of fmap, and e2 designates the extent of its range.

The above annotation system can be used for locating the appropriate mappings for
correcting the identified mismatches. It is possible that none of the existing mappings
can be used for correcting a given mismatch. Instead of building a new mapping, there
are cases in which the desired mapping can be obtained by composing in sequence two
or more existing mappings.

6 Related Work and Concluding Remarks

Several problem solving environments (PSEs) have been proposed to support the de-
sign and enactment of scientific workflows [10]. Generally, they do not provide means
for identifying and correcting mismatches. Taverna, for example, allows the designer
to connect any two operations regardless of whether the connected outputs and inputs
are compatible. Some PSEs are able to identify type mismatches. In Triana [8], data
links are checked at design time and a warning message is displayed whenever two
connected parameters have incompatible data types. In terms of parameter mapping,
Kepler [3] is, to our knowledge, the only system which supports the mapping of op-
eration parameters that have type mismatches. Note, however, that parameter mapping



246 K. Belhajjame, S.M. Embury, and N.W. Paton

is a work in progress that is not supported by the current distribution of Kepler. The
semantic domain of the operation inputs and outputs are described using an ontology.
Whenever two connected parameters belong to compatible domains but have incompat-
ible data types, a mapping is generated to transform the output parameter structure into
the structure of the succeeding input parameter [2]. Incompatibilities due to differences
in representation format, content and extent are not handled by this proposal.

In this paper, we have characterised a range of mismatches that can occur in scientific
workflows. Our categorisation goes beyond existing work in this area by identifying the
need for additional parameter annotations describing representation formats and ex-
tents, and in showing how they interact with the more familiar notions of domain and
data type annotations. The categorisation can be used to implement mismatch detection
and resolution services that allow workflow designers to concentrate their attention first
on the core aspects of workflow semantics, and to consider the necessary data transfor-
mations afterwards. For complex workflows, this opens up the possibility for domain
experts to rapidly specify abstract workflows, which they then pass to staff with techni-
cal expertise in managing data mapping and transformation to resolve any gaps in the
workflow.

We have developed a prototype that implements the proposed framework as an exten-
sion of the Taverna workbench [7]. Using the prototype, we have conducted a prelimi-
nary evaluation of our mismatch categorisation. Real scale trials are not yet a practical
possibility, due to the lack of rich service and annotation mappings. The Feta registry we
are currently using, for example, contains the descriptions of around 30 service opera-
tions, though more extensive annotations are planned. However, we wished to gain some
insight into the degree to which the mismatches we have identified occur in practice.
To this end, we collected together a sample set of 14 bioinformatics workflows, which
were designed in the context of e-science projects such as ISPIDER4, myGrid5 and Pe-
gasys6. We then examined the operations contained within the workflows and made a
judgement as to whether the operation was part of the core semantics of the workflow
or whether its role in the workflow was to resolve incompatibilities between core oper-
ation parameters. We also attempted to classify the mismatches we found based on the
categorisation presented in this paper.

The results of this small study showed that the most commonly occurring types of
mismatches are the representation and domain mismatches. The majority of the work-
flows that we analysed suffered from these kind of incompatibilities, with the next
most common kind being cardinality and extent mismatches. In fact, most of the type
mismatches we identified were actually cardinality mismatches; non-cardinality-based
type mismatches appear to be rare, if our small sample set is a reliable guide. This
can be explained by the following two observations. First, the inputs and outputs of
most bioinformatics analysis operations are weakly typed [5]. In most cases, parame-
ters are either defined as strings or arrays of strings, regardless of the complexity of
the data values actually being communicated. The second reason for the comparative
rarity of non-cardinality-based type mismatch is that, for the time being, most of the

4 http://www.ispider.man.ac.uk
5 http://www.mygrid.org.uk
6 http://bioinformatics.ubc.ca/pegasys/



On Characterising and Identifying Mismatches in Scientific Workflows 247

available scientific workflow systems are not able to process complex types. Thus the
work of parsing and constructing such data values is pushed down into the operations
themselves.

Clearly, open questions remain regarding the best approaches to identify candidate
mappings for identified mismatches. We are currently investigating the possibility of
using mapping quality as a search criterion during mismatch resolution. This refers to
the non-functional properties of mappings that may help the designer to select the best
mapping for a given context [6]. Examples of such properties include the information
and computational resources used for performing the mapping.

Acknowledgements

The work presented in this paper was funded by a grant from the BBSRC. We are also
grateful to Duncan Hull and Robert Stevens, and our colleagues in the ISPIDER project,
for useful discussions on mismatches in scientific workflows.

References

1. K. Belhajjame, S. M. Embury, H. Fan, C. A. Goble, H. Hermjakob, S. J. Hubbard, D. Jones,
P. Jones, N. Martin, S. Oliver, C. Orengo, N. W. Paton, A. Poulovassilis, J. Siepen, R. Stevens,
C. Taylor, N. Vinod, L. Zamboulis, and W. Zhu. Proteome data integration: Characteristics
and challenges. In UK All Hands Meeting, 2005.

2. Sh. Bowers and B. Ludäscher. An ontology-driven framework for data transformation in
scientific workflows. In DILS, pages 1–16, 2004.

3. Sh. Bowers and B. Ludäscher. Actor-oriented design of scientific workflows. In ER,
pages 369–384, 2005.

4. T. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisi-
tion, 5(2):199–220, 1993.

5. D. Hull, R. Stevens, P. Lord, C. Wroe, and C. Goble. Treating shimantic web syndrome with
ontologies. In First Advanced Knowledge Technologies workshop on Semantic Web Services
(AKT-SWS04), 2004.

6. E. M. Maximilien and M. P. Singh. A framework and ontology for dynamic web services
selection. IEEE Internet Computing, 8(5):84–93, 2004.

7. Th. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054, 2004.

8. I. J. Taylor, M. S. Shields, I. Wang, and O. F. Rana. Triana applications within grid computing
and peer to peer environments. J. Grid Comput., 1(2):199–217, 2003.

9. Ch. Wroe, R. Stevens, C. A. Goble, A. Roberts, and R. M. Greenwood. A suite of daml+oil
ontologies to describe bioinformatics web services and data. Int. J. Cooperative Inf. Syst.,
12(2):197–224, 2003.

10. J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid computing.
SIGMOD Record, 34(3):44–49, 2005.



Collection-Oriented Scientific Workflows for
Integrating and Analyzing Biological Data

Timothy McPhillips1, Shawn Bowers1, and Bertram Ludäscher1 2

1 UC Davis Genome Center, University of California, Davis
2 Department of Computer Science, University of California, Davis

Abstract. Steps in scientific workflows often generate collections of results,
causing the data flowing through workflows to become increasingly nested. Be-
cause conventional workflow components (or actors) typically operate on simple
or application-specific data types, additional actors often are required to man-
age these nested data collections. As a result, conventional workflows become
increasingly complex as data becomes more nested. This paper describes a new
paradigm for developing scientific workflows that transparently manages nested
data collections. Collection-oriented workflows have a number of advantages
over conventional approaches including simpler workflow designs (e.g., requir-
ing fewer actors and control-flow constructs) that are invariant under changes in
data nesting. Our implementation within the K scientific workflow system
enables the explicit representation of collections and collection schemas, concur-
rent operation over collection contents via multi-level pipeline parallelism, and
allows collection-aware actors to be composed readily from conventional actors.

1 Introduction

Scientists today require access to data from diverse sources. Nowhere is this need more
pressing than in the life sciences, where multiplying databases and rapidly growing data
repositories promise to provide researchers with a wealth of information relevant to the
systems they study. E ectively exploiting diverse sources of data requires a spectrum
of data integration approaches.

In the database community, data integration traditionally means resolving di erent
data structures that represent fundamentally the same kind of information [11]. This
information may be stored using heterogeneous schemas, and may use di erent repre-
sentations for data values (e.g., for identifying objects). In such cases, data integration
involves determining mappings between source schemas, and then transforming these
schemas into a common schema and corresponding integrated data set that can be used
for some other purpose. These mappings and transformations typically represent logi-
cally necessary relationships between di erent data sources.

In contrast, data integration in the life sciences often entails applying fundamen-
tally di erent kinds of information to answer scientific questions, make discoveries,

Work supported in part by SciDAC SDM (DE-FC02-01ER25486), NSF SEEK (DBI-
0533368), and NSF GEON (EAR-0225673).

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 248–263, 2006.
c Springer-Verlag Berlin Heidelberg 2006



Collection-Oriented Scientific Workflows 249

Fig. 1. Scientific workflow components frequently produce lists of results: (a) typical bioinfor-
matics components; and (b) a hypothetical workflow composed from these components that leads
to increasingly nested data collections

and test theories. Such scientific data integration procedures necessarily invoke scien-
tific theories that cannot be inferred from schemas or data alone. For example, consider
a systematist who wishes to use both genomic sequence data and morphological data
in the process of inferring the evolutionary relationships among organisms. Instead of
simply mapping DNA sequences and morphological data into a uniform data format,
di erent processes may be applied to each data source to infer evolutionary (i.e., phy-
logenetic) trees. The systematist then may use the assumption that the organisms have
only one true set of evolutionary relationships, and that the phylogenetic trees inferred
from genomic and morphological data approximate the true relationships. By employ-
ing this theory, the researcher may “integrate” these distinct data sources by computing
a consensus tree that reflects commonalities in the distinct phylogenetic trees inferred
from the di erent data sources. These consensus trees (i.e., the resulting data product
of integration) can then be analyzed further or applied in other studies.

The challenge of integrating life-science data from multiple sources becomes even
more daunting as disciplines become increasingly specialized and as more diverse types
of scientific data are desired. Scientific workflow systems [12,13,15,20,22,4] aim at fa-
cilitating these types of integration and analysis.1 However, current scientific workflow
systems still o er little or no support for e ectively managing (and hiding) the inherent
complexity of life-science data, leading to overly complex workflows that are hard to
create, reuse, and optimize.

As shown in Figure 1, scientific workflow components (or actors) frequently gener-
ate lists of results. When carried out one after the other, such operations naturally yield
increasingly nested collections of data that must be managed during workflow execu-
tion. This situation is further complicated by the fact that the steps in such workflows
in general operate on di erent nesting levels. For example, a query of a database map-
ping sequence motifs to known transcription factors might take a single motif as an
input, while the operation upstream of this step in the workflow might generate a list
of motifs to operate upon. Similarly, the collection of all transcription factors associ-
ated with a number of di erent sequence motifs might be required as input to a down-
stream component. As these examples demonstrate, scientific workflows must be able to

1 Figure 4 shows an implementation of a workflow for inferring and analyzing phylogenetic
trees using the K system.



250 T. McPhillips, S. Bowers, and B. Ludäscher

maintain associations within and between nested lists of intermediate results through-
out the workflow, while at the same time presenting to each workflow component data
inputs of the correct type and granularity.

We address this problem by proposing a framework for representing and manag-
ing nested collections in scientific workflows (Section 2). Our approach is inspired by
flow-based programming [18] and techniques used in collection-based [3] and func-
tional programming languages. We represent nested data collections as “flat” sequences
of data tokens embedded with special control tokens for delimiting the beginning and
end of each collection. We previously have described [17] how our implementation of
this approach within the K scientific workflow system provides convenient high-
level operations for managing nested collections; facilitates highly pipelined execution
of actors operating at di erent levels of collection nesting; simplifies workflow design;
enables context-dependent, dynamic configuration of actors; and supports robust work-
flow exception handling.

In this paper we define an abstract data model for collection-oriented workflows
(Section 3). Using this abstract data model, we then define a lightweight schema lan-
guage for restricting collection-oriented structures. Collection schemas can be used for
a number of purposes. They allow developers to “publish” reusable collection defini-
tions. Schemas are also used in defining scope parameters (Section 4), which declare the
type of data an actor operates over, and how the actor should be invoked over that data.
In general, scope parameters are declarative expressions used to configure collection-
aware actors and to simplify actor development. Finally, we introduce an approach that
allows collection-aware actors to be composed readily from conventional K actors,
and show how this approach can simplify the development of new collection-aware ac-
tors and further facilitate reusability in scientific workflows.

2 The Collection-Oriented Workflow Approach

2.1 The K Scientific Workflow System

The K scientific workflow system [1,12] is being developed jointly by a
collaboration of application-oriented scientific research projects.2 K extends the
P II3 system (hereafter, P ) with new features and components for sci-
entific workflow design and for e cient workflow execution using distributed compu-
tational and experimental resources. P was originally developed as a modeling
and simulation environment, e.g. to study complex computation models and embedded
system applications.

In K , users develop workflows by selecting appropriate components (called
actors) and placing them on the design canvas. Once on the canvas, components can
be “wired” together to form the desired dataflow graph, e.g., as shown in Figure 4.
Actors have input ports and output ports that provide the communication interface to
other actors. Workflows can be hierarchically defined, using composite actors to contain
subworkflows. Control-flow elements such as branches and loops are also supported.

2

3



Collection-Oriented Scientific Workflows 251

In K , actors can be written directly in Java or can wrap external components.
For example, K provides mechanisms to create actors from web services, C C
applications, scripting languages, R4 and Matlab, database queries, SRB5 commands,
and so on.

In K , data is represented as a sequence of tokens, which are passed from one
actor to another via actor connections. K di ers from other scientific workflow
systems in that the overall execution and component interaction semantics of a work-
flow is not determined by actors, but instead is defined by a separate component called a
director. This separation allows actors to be reused in workflows having di erent mod-
els of computation. K (via P ) includes directors that specify, e.g., process
network (PN), synchronous dataflow (SDF), continuous time (CT), discrete event (DE),
and finite state machine (FSM) computation models.

Most scientific workflows defined using K use the PN director (based on [9]), or
SDF, a restricted version of PN. The PN director executes each actor in a workflow as a
separate process (or thread). Actors communicate asynchronously in process networks
through bu ered channels implemented as queues of e ectively unbounded size. The
PN director can be used to pipeline data tokens through scientific workflows, enabling
highly concurrent execution. In SDF, actors a priori define fixed token consumption and
production rates. This allows the SDF director to statically schedule actors [10], while
guaranteeing certain properties of workflows. P ’s support for composite actors
allow multiple computing models to be used within a single workflow by optionally
specifying distinct directors for particular subworkflows, e.g., the PaupHSearch com-
posite actor employs the SDF director (Figure 8), but may be used within a workflow
based on the PN director (Figure 4).

2.2 Managing Nested Data Collections in Kepler

K currently does not provide explicit support for managing nested collections, and
workflow authors use a variety of approaches to add this support to K workflows.
The general approach used to support nested collections in K is shown in Figure 2.
Figure 2 (a) shows two conventional K actors A and B, where the output of A is
connected to the input of B. Here, A produces singleton data items of type (where
individual items are denoted 1, 2, etc.), which are directly consumed by B. Figure 2 (b)
shows a similar workflow, but where actor A has been replaced by actor A , which
produces lists of items of type instead of only singleton values. The block labeled CF
indicates where special control-flow actors are used to unpack and repack list elements.6

Figure 2 (c) uses the same underlying workflow; in this case however, actor A receives
a list of input values, introducing additional control-flow blocks. Figure 2 (d) shows the
case where an actor A produces pairs of items of type ( ), the items are routed
using a control-flow bock to the B actor (which expects only items), and the items
are routed downstream where they are paired with B’s output (again, using a control-
flow block) and passed as input to the C actor.

4

5 Storage Resource Broker,
6 Control-flow blocks are implemented in a number of ways in practice, but are typically mod-

eled using multiple low-level actors possibly placed within a composite.



252 T. McPhillips, S. Bowers, and B. Ludäscher

Fig. 2. Conventional scientific workflows with control-flow constructs for handling complex data
(top), and corresponding collection-oriented workflows (bottom) in which the control-flow is
managed explicitly by the framework

As Figure 2 demonstrates, a significant weakness of using special actors to manage
collections is that the resulting workflows must be modified to handle changes in (up-
stream) data nesting. In principle, one could tailor variants of actors A–C to support par-
ticular collection structures, e.g., by embedding the logic represented by the CF blocks
within custom code in each actor. This approach, however, limits the ability to reuse
these actors in other workflows and contexts. In general, ad hoc approaches for man-
aging nested collections in scientific workflows leads to code duplication and tightly
couples actor implementations with workflow designs; hampers rapid prototyping of
workflows and associated data structures; makes comprehension, reuse, and refactoring
of existing workflows di cult; and limits reuse of actors designed for these workflows.

Our solution is to provide explicit support for developing “collection-aware” actors.
These actors employ a common framework for managing nested collections e ciently
and transparently. Moreover, workflows composed from collection-aware actors do not
su er from the reuse limitations inherent in ad hoc approaches to managing nested col-
lections. The lower panel of Figure 2 shows collection-oriented workflows equivalent to
the conventional workflows in the upper panel. Note that introducing additional levels of
data nesting does not change the collection-oriented workflow definitions. Collection-
oriented workflows and actors are by design immune to such changes and thus far more
reusable. In this example, each collection-aware actor defines their input of interest
using a scope expression (e.g., for A and for B). The framework automatically per-
forms the necessary control-flow functions for providing each actor with their data of
interest. In addition, input data outside of an actor’s scope is automatically forwarded
downstream.

Figure 3 illustrates our approach for streaming nested collections through workflows.
Data streams are “flattened” into a sequence of tokens by denoting nested collections
via pairs of explicit opening and closing delimiter tokens. Delimited collections may



Collection-Oriented Scientific Workflows 253

Fig. 3. Collection-oriented workflows represent nested data collections as flat token streams,
where collection-aware actors can concurrently process collections

contain data tokens (labeled di in Figure 3), explicit metadata tokens (labeled m j in
Figure 3), and other sub-collections (denoted using embedded control tokens, e.g., bstart

and bend). Metadata tokens are used to carry information that applies to the collections
or data items that follow them in the stream. As shown in Figure 3, a series of actors may
operate concurrently on the contents of collections. For example, in Figure 3, Actors 1-
4 all simultaneously process parts of collection a, Actors 2 and 3 each simultaneously
process a part of collection c, and so on.

Figure 4 shows a collection-oriented workflow implemented within K for infer-
ring phylogenetic trees. The AddData actor is used to specify a list of files containing
input data in the Nexus file format [14]. The ReadFile actor reads these Nexus files
from disk and outputs a generic TextFile collection for each; ParseNexus transforms
these text collections into corresponding Nexus collections. The PaupHSearch actor
executes the PAUP* [21] external application (as a separate system process) on each
Nexus collection it receives, adding the phylogenetic trees it infers to the collection.
The PhylipConsense actor applies the CONSENSE7 external application to the trees
inferred by the PaupHSearch actor, adding a consensus tree (reflecting commonalities
in the trees inferred by PAUP*) to each Nexus collection. The ExceptionCatcher actor
discards Nexus collections that triggered exceptions in upstream actors. The TreeRe-
porter actor displays each tree and associated statistics for each tree in a web-browser
interface. Finally, the ComposeNexus and WriteFile actors save the results of analyz-
ing each Nexus collection back to disk in the Nexus file format.

Note that each Nexus collection created by the ParseNexus actor pass through five
downstream actors. These actors operate on the Nexus collections in turn, assembly-
line style, reading data from the collections, and adding new information back to the
collections. In particular, PaupHSearch expects to find data representing a character
matrix in each Nexus collection, and PhylipConsense expects to find the phylogenetic
trees inferred by PaupHSearch. The TreeReporter actor requires access to both the
character matrix and the trees. As described in detail in the next section, each actor
in a collection-oriented workflow declares what collection types (e.g., Nexus) and data
types (e.g., CharacterMatrix) it operates on using a scope expression. As previously
mentioned, the framework transparently passes any data not required by an actor to
downstream actors, i.e., an actor is never made aware of data it does not declare interest
in. The result is that composing collection-oriented workflows simply entails stringing

7



254 T. McPhillips, S. Bowers, and B. Ludäscher

Fig. 4. A K collection-oriented workflow for inferring phylogenetic trees

together actors in an intuitive order (e.g., it makes sense to run TreeReporter after
PaupHSearch and PhylipConsense), without regard to the details of the data structures
flowing between actors at runtime.

3 Abstract Data Model for Collection-Oriented Workflows

In this section we describe an abstract data model and syntax for representing
collection-oriented structures (instances and schemas). Our model represents nested
data collections as node-labeled ordered trees that are “flattened” into sequences of un-
derlying data tokens.

3.1 Collection Instances

A collection instance in our abstract data model denotes a node-labeled ordered tree
(similar to XML). Tree order represents the serialization order of a collection. In gen-
eral, the order of items within a collection may or may not be “scientifically” mean-
ingful. Node labels are applied to collections, metadata, and data values. Syntactically,
a collection is denoted l[ ], a metadata value is denoted @l:d, and a data value is
denoted l:d, where l is a label and d a data value. A data (or metadata) value is either
an atomic value such as a string or int, or a complex value represented by an object
identifier.

A collection-oriented sequence can consist of labeled collections, labeled metadata
values, and labeled data values. We require each label within a particular metadata
sequence to be unique. The abstract syntax for sequences is defined by the following
grammar. Note that in the abstract syntax, a collection defines a tree by encapsulating a
collection-oriented sequence, where each item represents a child of the collection.



Collection-Oriented Scientific Workflows 255

s :: , s (Sequence)
:: l:d @l:d l[s] (Data, Metadata, or Collection Value)

We convert collection-oriented sequences into K token sequences as follows. Each
nested data collection is represented as a flat sequence of tokens within K (see
Figure 3), such that each collection instance is enclosed by special opening and closing
delimiter tokens (representing the ‘[’ and ‘]’ collection symbols). Delimiter tokens carry
the label of the associated collection. Tokens are also used to store metadata and data
items, and to provide actors with explicit access to item labels and to atomic and object-
based values.

Nested data collections are often used to model the physical structure of a system
under study. The following example, taken from structural biology, represents a portion
of a protein structure described in a Protein Data Bank8 (PDB) file. The PDB collection
contains a protein-chain collection that in turn contains two atom objects o1 and o2.

PDBCollection[ ProteinChain[ Atom:o1, Atom:o2 ] ]

The next example defines a Nexus collection nested within a project collection, along
with associated metadata.

Project[ @FilePath:‘/myproject/aquatic/turtles.nex’,
Nexus[CharacterMatrix:o1, @CI:0 88, Tree:o2, @CI:0 82, Tree:o3 ] ]

This Nexus collection has a file-path metadata value, and each tree within the collection
has a CI (consistency index) metadata value. Note that the character matrix and trees
inherit the file-path metadata value of the Nexus collection.

In the abstract model, we require metadata values for a given data or collection item
to directly precede the item in a sequence. This restriction guarantees that as a data
item is received by an actor, the actor has seen the item’s associated metadata values.
Metadata values are automatically cached for an actor in the K implementation
of collection-oriented workflows. In general, this approach simplifies the processing of
metadata, and for many cases limits the amount of data that must be cached, maximizing
the performance of pipelining.

The function descendents(c) returns the contents of a collection c as a sequence
of items, given by a top-down, left-to-right traversal of c. The function metadata( )
returns, as a sequence, the metadata values directly associated with a data or collection
item . Metadata values “cascade” to the descendents of a collection, unless otherwise
overridden by an item. Thus, the function metadata ( ) returns all metadata values, as
a sequence, for data and collection items .

The abstract data model for nested data collections is similar to XML. In particular,
data and collection items correspond to XML elements, where data “elements” con-
tain only simple content, collection “elements” contain complex content (i.e., subele-
ments), and metadata items correspond to attributes. Our model is simpler in that it
does not have constructs corresponding to XML documents, identifiers (IDs), references
(IDREFs), or mixed content. Also, we treat nesting explicitly as denoting “part-of” re-
lationships, with the result that metadata is inherited by contained “parts.” Because of

8



256 T. McPhillips, S. Bowers, and B. Ludäscher

the similarity to XML, we can use standard XML languages over nested collections
such as XPath expressions, e.g., to retrieve portions of collection-oriented sequences.9

3.2 Collection Schemas

Collection schemas are similar to regular tree grammars [19]. However, our approach
is tailored to collection-oriented workflows, in that: (1) we do not assume a “closed”
schema model by default, and instead allow conforming instances to contain additional
information; (2) we do not restrict the particular nesting levels of sub-collections, and
allow conforming instances to contain unspecified intermediate collections; and (3) we
do not restrict the ordering of sub-items (collections or data items).

A simple example of a collection schema and conforming instance are given in
Figure 5. The schema, shown on the left, defines a PDB collection of interest as contain-
ing an optional header collection and one or more protein chain collections, where each
protein chain contains one or more atoms having a name metadata value. A conforming
instance of the schema is shown on the right of Figure 5. The PDB collection instance
does not directly contain a protein chain, and instead contains multiple “molecule” col-
lections. Similarly, each protein chain does not directly contain an atom data item, and
instead the atoms are nested within residue collections. Thus, unlike with XML Schema
or XML DTDs, collection schemas allow instances to have additional items including
intermediate collections (e.g., matching PDBCollection ProteinChain Atom instead
of PDBCollection ProteinChain Atom).

Schema

PDBCollection [
Header [ ] ?, ProteinChain [
Atom with @name + ] +

]

Instance

PDBCollection [
Molecule [ 
ProteinChain [

Residue [ @name:N, Atom:A, @name:C, Atom:B, … ],
Residue [ …] ], 

ProteinChain […] ], 
Molecule […] ]

PDBCollection

ProteinChain +

Atom +

Header ?

@name
Atom A

PDBCollection

Molecule A Molecule B

ProteinChain A ProteinChain B

Residue BResidue A

Atom B
…

@name:N @name:C

…

…

…

Fig. 5. A collection schema (left) shown as both a tree pattern and using the abstract schema
language, and a conforming instance (right) shown both as a nested collection and using the
abstract collection language

A sequence type specifies the kinds of items expected within a given sequence. In
addition to expected item types, one can also specify item types that are not permissible
in conforming sequences (via the not expression as shown below). An item type is either

9 With the caveat that metadata values, treated as attributes, “cascade” to nested items.



Collection-Oriented Scientific Workflows 257

:: , ( s) ::
v, s ::

:: , ( s) ::
v, s :: ?, s :: ?

::
v, s :: +

s ::
(s :: )

s :: not
( s) s ::

s :: s

Fig. 6. Typing rules for occurrence definitions and sequences

l:d :: data l:d :: l
d ::

l:d :: :
d ::

l:d :: l:

l[s] :: [ ] l[s] :: l[ ]
decendents(l[s]) :: s

l[s] :: [ s]
decendents(l[s]) :: s

l[s] :: l[ s]

@l:d :: @ @l:d :: @l
d ::

@l:d :: @ :
d ::

@l:d :: @l:

:: q @l:d metadata( )
@l:d, :: q

:: q metadata ( ) :: m

, :: with m

Fig. 7. Typing rules for data, collection, and metadata items

a data type or a collection type (itself a sequence type). Data and collection types can
have occurrence qualifiers restricting the number of times an item may occur within a
sequence. The occurrence qualifiers are zero or one (?), one or more (+), zero or more
(*), or exactly one (the default). Data and collection types also can have associated
metadata types.

A collection type can specify a label and a sequence type. A data or metadata type
can specify a label and a value type. Value types (denoted ) are given by their type
names. We do not further specify value structures for complex objects. As for collection
instances, metadata types given for a data or collection type “cascade” to nested items.

s :: q not s, s (SequenceType)
q :: v + * ? (QualifiedType)

:: d with m c with m (ItemType)
d :: data l : l: (DataType)
c :: l [ s ] (CollectionType)

m :: m m, m (MetadataSet)
m :: @ l : (MetadataType)

Given a sequence s and a sequence type s, we write s :: s if s conforms to the type
s. Figure 6 defines the typing rules for occurrence definitions and general sequences.

Note that the zero-or-many occurrence qualifier, as shown, does not restrict collection
contents. However, this qualifier is useful for defining collection-oriented actors, which
we discuss in more detail in the next section. The last rule of Figure 6 defines the
general case for matching entire sequences. Figure 7 gives the typing rules for data
items, collections, and metadata items.

Using schema expressions, it is possible to define standard representations for use in
collection-oriented workflows. In particular, a given schema description can be



258 T. McPhillips, S. Bowers, and B. Ludäscher

“published,” allowing it to be reused by actors. These published schemas also can en-
able certain forms of static type checking, i.e., to ensure that a given collection instance
satisfies the target schema within a workflow. Schema expressions also form the basis
for scope expressions, as described in the next section.

4 Scope Expressions for Collection-Oriented Actors

Collection-oriented actors are typically designed to process data within a particular
scope, as opposed to entire streams of heterogeneous data collections. Here we intro-
duce scope parameters for explicitly defining the portion of an incoming data stream
that is relevant to a collection-aware actor. Scope parameters can significantly reduce
the e ort of developing collection-oriented actors. For example, all data that falls out-
side of an actor’s scope specification can be automatically “passed through” the actor
unchanged. The use of scope parameters in this way also facilitates actor reusability,
allowing actors to be used on selected portions of complex data streams, and without
the actors needing to understand the structure or contents of the entire stream. Workflow
designers also can more readily configure a collection-aware actor to work over partic-
ular subsets of data by specializing scope parameters, allowing actors to be flexibly
reused in distinct workflows. We have found the following types of scope parameters to
be useful in practice.

– Read Scope. A read scope specifies the portion of an incoming data sequence that is
relevant to an actor. Typically, the read scope is used to identify the items generally
required for an actor to execute. For example, consider an actor A whose read scope
is given as a Nexus collection. Here, each particular Nexus collection within an
input stream “triggers” A to execute.

– Write Scope. A write scope specifies where output data is placed within a given
stream. For example, actor A may add new data items within each input Nexus
collection. Alternatively, the actor may add a new collection as a sibling of the
Nexus collection, or even replace the Nexus collection with an altogether new type
of collection.

– Iteration Scope. An iteration scope extends a read scope and describes in more
detail (1) what specific data items within the read scope are used by an actor for
processing, and (2) how the actor should be invoked over those data items. For
example, using an iteration-scope parameter, actor A may state that it should be
invoked once for each phylogenetic tree in a collection. Alternatively, the actor
may state that it should be invoked once over all trees within a collection.

– Scope Filter. A scope filter further specializes a read scope. Scope filters are
typically used by workflow developers to control processing within a scientific
workflow. For example, one might specialize the read scope of actor A by adding
a metadata restriction (i.e., that a particular metadata value is required) or by re-
quiring the Nexus collection to be nested within another type of collection (e.g., a
particular kind of sub-project collection).

Here we focus on read and iteration scope parameters. Our approach is to use col-
lection schemas for expressing read scopes (i.e., for stating the type of incoming data



Collection-Oriented Scientific Workflows 259

of interest), and to model iteration scopes as queries over schema instances. The result
obtained from applying an iteration-scope query to a read-scope instance is then used
to control the iteration of the actor (for the particular read-scope instance). We give a
simple query language for specifying iteration scopes, where parts of the read scope of
an actor are embedded with variable bindings. Both read and iteration scopes are used
to facilitate the construction of collection-aware composite actors that wrap traditional
actors and subworkflows, as we discuss further in the following section.

The following is an example of a read scope for the PaupHSearch actor of Figure 4.

PaupHSearch.read-scope := Nexus[ CharacterMatrix, WeightVector ? ]

The PaupHSearch works over Nexus collections that contain exactly one character ma-
trix data item and zero-or-one weight vector. The iteration scope of the PaupHSearch
actor is straightforward. For each Nexus collection, the actor consumes the character
matrix and weight vector (if it exists), and produces a set of phylogenetic trees. The
PaupHSearch iteration scope is given by the following expression.

PaupHSearch.iteration-scope ($c, $v) :=
Nexus[ CharacterMatrix $c , WeightVector $v ].

This iteration expression is shorthand for the following Datalog query.

R(c, v) :- Collection(n), Label(n, Nexus), Descendents(n, c),
Label(c, CharacterMatrix), Descendents(n, v), Label(v, WeightVector).

The relations used in the body of the query access portions of a given instance of the
read-scope schema. For example, the Label relation associates a collection, data, or
metadata item with its label, the Collection relation contains the collection items within
the instance, and the Descendents relation relates collection items with their (transi-
tively) contained items.

The read scope of the TreeReporter actor of Figure 4 is given by the following
expression.

TreeReporter.read-scope := Nexus[ CharacterMatrix, Tree + ].

In this case, the TreeReporter actor displays a report for each tree in the nexus col-
lection using the given character matrix. Thus, for a given nexus collection, the actor
is repeatedly invoked, once for each tree. This invocation pattern is expressed by the
following scope iteration.

TreeReporter.iteration-scope ($c, $t) := Nexus[ CharacterMatrix $c ,Tree $t ].

Finally, the read scope of the ComposeNexus actor of Figure 4 is given by the
following expression.

ComposeNexus.read-scope := Nexus[ CharacterMatrix?,WeightVector ?,Tree *]

The ComposeNexus actor converts an optional character matrix, weight vector, and a
list of zero-or-more trees into a Nexus file. Note here that the actor is invoked exactly
once for each input Nexus collection, unlike the TreeReporter actor, which is invoked
once per tree. This invocation pattern is described by the following iteration scope.



260 T. McPhillips, S. Bowers, and B. Ludäscher

ComposeNexus.iteration-scope ($c, $v, collect($t in $n)) :=
Nexus $n [ CharacterMatrix $c , WeightVector $v , Tree $t ]

The collect expression constructs a list of trees, where each tree is contained in the
given Nexus collection. Every collect expression in an iteration scope consists of a
data or metadata variable (in this case $t) combined with a collection variable (in this
case $n).

In general, an iteration scope defines a mapping from instances I of a collection
schema S to a relation R(x1 xn), for n 1. We call each xi of R an attribute of the
iteration scope. Let I be an instance of the read-scope S . We write R(I) to denote the
result of applying the iteration scope to I, where each xi attribute value for a tuple in
R(I) consists of either a metadata value, a data value, or a list of values resulting from
a collect expression. Further, the actor is invoked once for each tuple in R(I). We note
that R(I) can be “lazily” constructed (similar to a standard database iterator) such that
the actor is invoked immediately as each new tuple is obtained.

5 Developing Collection-Aware Actors

We provide two approaches for developing collection-aware actors in K . The first,
which we discuss in more detail in [17], is to directly implement collection-aware actors
natively using a Java API. This API simplifies the implementation of collection-aware
actors by providing comprehensive support for streaming, managing, and operating on
nested data collections. However, we do not expect all actors to be developed in this
way. A large number of “legacy” conventional actors already exist and are in use, in-
cluding web-services and application components that are not designed to be collection
aware. Furthermore, it is often easier and more intuitive to implement conventional
K actors, especially those actors that do not explicitly operate on collections. Ex-
amples include straightforward data-transformation actors that take a single input and
produce a single output, and actors that provide low-level functions for reading and
writing files.

Thus, the second approach for developing collection-aware actors, which we in-
troduce here, involves wrapping traditional actors, or entire subworkflows, within
collection-aware composite actors. This approach facilitates the use of K itself for
specifying collection-aware actors, allows conventional actors to be reused within mul-
tiple collection-aware actors, and reduces the need for writing ad hoc, single-purpose
collection-aware actors from scratch.

To demonstrate the approach, Figure 8 shows how the PaupHSearch, TreeReporter,
and ComposeNexus composite actors of Figure 4 are defined. Each composite ac-
tor contains a subworkflow employing an SDF director and one or more conventional
actors. The ComposeNexus subworkflow illustrates how a single conventional actor
may be wrapped in a composite to yield a collection-aware version of the actor. The
subworkflow input ports labeled CharacterMatrix?, WeightVector? and Tree* map to
attributes of the iteration scope parameter of the enclosing collection-aware compos-
ite actor. Like any other collection-oriented actor, the ComposeNexus subworkflow
is invoked each time a match is found for the iteration scope of the actor. On each



Collection-Oriented Scientific Workflows 261

ComposeNexus

PaupHSearch

TreeReporter

Fig. 8. The PaupHSearch, TreeReporter, and ComposeNexus collection-aware actors defined
in terms of conventional actors

invocation, data values of the iteration-scope attributes are passed to the correspond-
ing subworkflow input ports, the actor within the subworkflow operates on these data,
and the outputs written by the enclosed actor are accumulated by the subworkflow
output port labeled String. The enclosing composite actor then inserts the output of
the subworkflow back into the data stream. The labels on the ports specify the types
and quantity of data consumed or produced by the subworkflow, and provide anchors
for mapping the iteration scope attributes to the ports.

The PaupHSearch and TreeReporter composite actors are more sophisticated. Both
create and destroy temporary file system directories for running external processes,
on each invocation, by employing the CreateProcessEnvironment and DestroyPro-
cessEnvironment conventional actors. Both run external applications (PAUP* and
DRAWGRAM10), write temporary files for these external programs to read, and parse
output files created by these programs. Note that the ComposeNexus conventional ac-
tor is used both in PaupHSearch and in the ComposeNexus composite actor.

Employing the SDF director in collection-aware composite actors, rather than the
PN director used to control the overall collection-oriented workflow, o ers a number of
practical advantages. The use of SDF simplifies the specification of these subworkflows,
requiring each actor to have a well-defined token consumption and production rate. In
addition, these lower-level actors can benefit from the optimized static schedule com-
puted by the SDF director, since they typically perform a single function or are meant
to be executed only once per composite invocation. The ability to use multiple models
of computation in a single overall workflow is one of the main strengths of K , and
is essential for supporting these SDF-based subworkflows in our collection-oriented
workflow framework.

10



262 T. McPhillips, S. Bowers, and B. Ludäscher

6 Conclusion

Our collection-oriented framework shares a number of similarities to XML-based ap-
proaches. For example, the way in which collection-aware actors operate on pipelined
nested collections has similarities with some XML stream processing techniques [6].
The approach is also similar in spirit to list processing constructs in functional pro-
gramming [2] as well as dataflow programming [18]. Because the abstract model of
nested data collections is (essentially) a subset of XML, we can leverage and adapt
existing XML-based query processing [7] and optimization techniques [8] for manag-
ing nested collections. For example, algorithms for XML-based publish and subscribe
architectures [23] are relevant for applying actor scope parameters to incoming data
streams, and iteration-scope expressions can leverage work in XML query optimization
and on languages such as XPathLog [16].

Scientific workflows play an important role in a number of ongoing large research
projects dealing with scientific data management, and represent an emerging paradigm
for analyzing and integrating biological data from diverse sources. The development of
“rigid” workflow modeling and design frameworks has recently been identified as a ma-
jor bottleneck for scientific workflow reuse and repurposing [5]. We have found that this
lack of flexibility is often due to the use of control-flow within workflows for managing,
integrating, and analyzing inherently complex life-science data. The collection-oriented
framework extends the capabilities of existing systems by facilitating the management
of scientific data within scientific workflows. In particular, collection-oriented work-
flows are often significantly simpler and more intuitive than their conventional counter-
parts, can support higher-levels of concurrency and pipelining, and allow flexible actor
configuration enabling greater levels of actor reuse. By additionally allowing collection-
aware actors to be composed from conventional actors and K sub-workflows,
our approach can support the reuse and repurposing of a wide variety of actors and
workflows.

References

1. I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock. Kepler: An Extensi-
ble System for Design and Execution of Scientific Workflows. In SSDBM, 2004.

2. P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Principles of Programming with Complex
Objects and Collection Types. Theoretical Computer Science, 149(1), 1995.

3. S. Davidson, C. Hara, and L. Popa. Querying an Object-Oriented Database using CPL. In
Brazilian Symposium on Databases (SBBD), 1997.

4. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi, and
M. Livny. Pegasus: Mapping Scientific Workflows onto the Grid. In European Across Grids
Conference, 2004.

5. A. Goderis, C. Goble, U. Sattler, and P. Lord. Seven Bottlenecks to Workflow Reuse and
Repurposing. In ISWC, 2005.

6. L. Golab and M. T. Özsu. Issues in Data Stream Management. ACM SIGMOD Record, 2003.
7. A. K. Gupta and D. Suciu. Stream Processing of XPath Queries with Predicates. In ACM

SIGMOD, pages 419–430, 2003.
8. Z. G. Ives, A. Y. Halevy, and D. S. Weld. An XML Query Engine for Network-Bound Data.

VLDB Journal, 11(4):380–402, 2002.



Collection-Oriented Scientific Workflows 263

9. G. Kahn and D. B. MacQueen. Coroutines and Networks of Parallel Processes. In IFIP
Congress, 1977.

10. E. A. Lee and D. G. Messerschmitt. Static Scheduling of Synchronous Data Flow Programs
for Digital Signal Processing. IEEE Trans. Comput., C-36, 1987.

11. U. Leser and F. Naumann. (Almost) Hands-O Information Integration for the Life Sciences.
In Conference on Innovative Data Systems Research (CIDR), 2005.

12. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao,
and Y. Zhao. Scientific Workflow Management and the Kepler System. Concurrency and
Computation: Practice Experience, 2005.

13. R. S. MacLeod, D. M. Weinstein, J. Davison de St. Germain, C. R. Johnson, S. G. Parker,
and D. Brooks. SCIRun BioPSE: Integrated Problem Solving Environment for Bioelectric
Field Problems and Visualization. In Symposium on Biomedical Imaging (ISBI): From Nano
to Macro, 2004.

14. D. Maddison, D. Swo ord, and W. Maddison. NEXUS: An Extensible File Format for
Systematic Information. Systematic Biology, 46(4):590–621, 1997.

15. S. Majithia, M. S. Shields, I. J. Taylor, and I. Wang. Triana: A Graphical Web Service
Composition and Execution Toolkit. In ICWS, 2004.

16. W. May. XPath-Logic and XPathLog: A Logic-Programming-Style XML Data Manipulation
Language. Theory and Practice of Logic Programming, 4(3):239–287, 2004.

17. T. McPhillips and S. Bowers. An Approach for Pipelining Nested Collections in Scientific
Workflows. ACM SIGMOD Record, 34(3):12–17, 2005.

18. J. Morrison. Flow-Based Programming. Van Nostrand Reinhold, 1994.
19. M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema Languages using Formal

Language Theory. In Extreme Markup Languages Conferences, 2001.
20. T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M. Greenwood, T. Carver,

K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: A Tool for the Composition and
Enactment of Bioinformatics Workflows. Bioinformatics, 20(17), 2004.

21. D. Swo ord. PAUP*: Phylogenetic Analysis Under Parsimony (*and Other Methods).
Version 4. Sinauer Associates, Sunderland, Massachusetts.

22. D. Thain, T. Tannenbaum, and M. Livny. Distributed Computing in Practice: The Condor
Experience. Concurrency – Practice and Experience, 17(2-4), 2005.

23. F. Tian, B. Reinwald, H. Pirahesh, T. Mayr, and J. Myllymaki. Implementing a Scalable
XML Publish Subscribe System Using a Relational Database System. In ACM SIGMOD,
pages 479–490, 2004.



Towards a Model of Provenance and User
Views in Scientific Workflows

Shirley Cohen, Sarah Cohen-Boulakia, and Susan Davidson

Department of Computer and Information Science
University of Pennsylvania, USA

{shirleyc, sarahcb, susan}@seas.upenn.edu

Abstract. Scientific experiments are becoming increasingly large and
complex, with a commensurate increase in the amount and complexity
of data generated. Data, both intermediate and final results, is derived
by chaining and nesting together multiple database searches and ana-
lytical tools. In many cases, the means by which the data are produced
is not known, making the data difficult to interpret and the experiment
impossible to reproduce. Provenance in scientific workflows is thus of
paramount importance.

In this paper, we provide a formal model of provenance for scientific
workflows which is general (i.e. can be used with existing workflow sys-
tems, such as Kepler, myGrid and Chimera) and sufficiently expressive to
answer the provenance queries we encountered in a number of case stud-
ies. Interestingly, our model not only takes into account the chained and
nested structure of scientific workflows, but allows asks for provenance
at different levels of abstraction (user views).

1 Introduction

Fueled by technologies capable of producing massive amounts of data, scientists
are faced with an explosion of information which must be rapidly analyzed and
combined with other data to form hypotheses and create knowledge. Scientific
analyses are thus becoming increasingly large and complex, with a commensurate
increase in the amount and complexity of data generated.

To address this problem, over the past several years a number of scientific
workflow systems have been developed to support scientists in the analysis of
their data. Such systems differ from business-oriented workflow systems in the fo-
cus on data – e.g. sequences, phylogenetic trees, proteins – and its transformation
into hypotheses and knowledge [23]. Examples of scientific workflow systems in-
clude myGrid/Taverna [19], Kepler [5], Chimera [12] and DiscoveryNet [22] (see
[30]). Still other interesting examples of workflow systems include MHOLline
[25], HKIS-Amadea [9], and AdaptFlow [14]. Some integration solutions also in-
clude workflows to add value to warehoused data. For example, the GUS [11]
system allows users to import data of interest, run bioinformatics tools over that
data, and store the results obtained; pipelines are expressed using Perl.

Scientific workflows are specified using a variety of graph-based models. Nodes
in the workflow specification represent step classes (alternatively called tasks,

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 264–279, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Towards a Model of Provenance and User Views in Scientific Workflows 265

actors, processes, boxes) and edges capture the flow of data between step classes.
In many workflow systems (e.g. Kepler and myGrid), a step class may itself be
a workflow. An execution of a workflow generates a partial order of steps, each
of which has a set of input and output data objects. Each step is an instance of
a step class, and the input-output flow of data and class associated with each
step must conform to the workflow specification (see for example [16]).

In workflow systems, data, both intermediate and final results, is thus derived
by chaining and nesting together multiple database searches and analytical tools.
In many cases, the means by which the data are produced is not known, making
the data difficult to interpret and the experiment impossible to reproduce. Prove-
nance in scientific workflows is thus of paramount and increasing importance, as
evidenced by recent specialized workshops [2] and surveys [23] dedicated to the
subject of provenance of scientific information.

Many systems using scientific workflows provide a way to keep track of the
origins of data. For example, the GUS schema contains about twenty tables
dedicated to provenance information. Some scientific workflow systems, such as
myGrid [28], record various kinds of metadata related to provenance. Recently,
Kepler has developed a logging mechanism for tracking information and depen-
dencies between components of the data flow [4]. Nevertheless, no formal model
of provenance for workflow systems has to our knowledge been developed which
precisely defines the meaning of provenance taking into account the nested struc-
ture of step classes and the data produced.

Formal models of provenance do exist within the database community (see for
example [6,3,27]). However, these models reason over restricted forms of alge-
braic queries and give very fine-grained reasoning; for example, a tuple in a result
gets its value from a particular set of tuples in the input (where provenance) and
is there because of a (possibly bigger) set of input tuples (why provenance). More
recently, [7] considers the problem of copying data between databases, and de-
scribes an approach in which these actions can be automatically recorded in a
convenient, queryable form with acceptable overhead. However, the problem of
tracking provenance in scientific workflow systems raises new challenges. First,
since the operators in workflows are black boxes (step classes), fine grained rea-
soning cannot be performed. The most that can be assumed is that steps are
deterministic, i.e. that given the same set of input the output will be the same.
This input must include not only data but also user input (e.g. the selection of
results based on visual inspection), parameter settings (e.g. the kind of matrix
used in a Blast tool), and any other input used by the step (e.g. a randomize
number used in a bootstrap). Second, scientific workflow systems frequently pro-
vide a notion of user views which determines whether or not a user can zoom
into a step class to see a sub-workflow. User views therefore affect the granularity
at which provenance is reasoned about.

The aim of this paper is to present a formal model of provenance in workflow
systems which takes into account the chained and nested structure of scien-
tific workflows as well as user views. The model has been formulated by in-
terviewing numerous scientists in several domains (e.g. genomic research, and



266 S. Cohen, S. Cohen-Boulakia, and S. Davidson

phylogenetic tree construction and analysis) and analyzing what several impor-
tant scientific workflow systems are currently doing. The model is abstract, i.e.
it details the minimum information that must be provided by a workflow system
in order to perform the types of reasoning about provenance that scientists wish
to perform. It is generic in the sense that it can be used by any workflow systems
providing this minimum information.

This paper is organized as follows. We first present one of the use cases col-
lected (Section 2) from our interviews of scientists, whose data provenance re-
quirements are representative of those of other studies. We then introduce our
model of provenance (Section 3) and in Section 4 show how it can be used to
express the provenance queries of Section 2. In Section 5 we show the connection
to nested transactions, and discuss whether or not the required provenance infor-
mation is provided by the logging mechanisms of Kepler, myGrid and Chimera.
Finally, Section 6 concludes the paper.

2 Tree Inference Use Case

Systematic biologists are attempting to develop a comprehensive history of life’s
origins by studying the phylogenetic relationships of the millions of earth species.
Assembling these species and placing them on the “tree of life” requires increased
amounts of information about each one as well as sophisticated analytical tools
to build an understanding of the relationships among species. At present, the
infrastructure used to manage the flow of phylogenetic data lacks the querying
capabilities needed to address many important scientific challenges.

Fig. 1. Tree inference use case



Towards a Model of Provenance and User Views in Scientific Workflows 267

As an example, consider a typical tree inference workflow depicted in Figure 1.
This workflow is composed of four main step classes (S1 to S4); the last step
class is nested and composed of four step classes (S4a to S4d).

The Download Sequence step class (S1) is responsible for obtaining a set of
chosen DNA sequences from GenBank. Note that the input to this step class is a
user-driven event. The second step class, Create Alignment (S2), takes in the raw
sequences and runs an alignment program, such as ClustalW [15], to generate
a multiple sequence alignment. The third step class, Refine Alignment (S3), is
where the biologist verifies and improves the quality of the multiple sequence
alignment by manually adjusting gaps inserted by the alignment program.

The fourth step class, Infer Tree (S4), takes the edited alignment and produces
from it a phylogenetic tree. Note that this step class contains multiple substeps
within it. The first substep class, Compute Trees (S4a), runs a tree inference
program like PAUP [24] or Phylip [21] and generates a set of unrooted trees
from the alignment. The second substep class, Create Consensus Tree (S4b),
computes a consensus tree from the set of unrooted trees. The third substep
class, Bootstrap Tree (S4c), calculates a confidence score for each node of the
consensus tree. The last substep class, Root Tree (S4d), consists of rooting the
consensus tree by selecting a site as an outgroup. The output from this substep
class, a rooted tree, is saved if it is considered biologically meaningful. Otherwise,
the alignment and inference step classes are repeated until a suitable rooted tree
is derived.

A typical lab executes this scenario several times a year, resulting in vast
amounts of intermediate and final data products. However, with current work-
flow technology this scenario is carried out without the ability to ask questions
about how a phylogenetic tree came to be and what alignment and sequences
it originated from. A biologist wishes to not only review the current state of a
phylogenetic analysis that is in progress, but also guide it to some desired fu-
ture state; such as refining the parameters to Clustal to produce a more precise
alignment or foreseeing (based on historical results) that Phylip may produce
fewer trees than PAUP*. The biologist also wishes to know which sequences
were dropped by the alignment program and consequently were not used to in-
fer the rooted tree. A related goal is to be able to assess the quality and impact
of a data product such as a rooted tree by reviewing both the DNA sequences
and alignment used to produce it, and understanding which subsequent work-
flow executions used the same alignment as input to a tree inference step. In
related studies, increased knowledge of data provenance will allow the biologist
to reuse intermediate products, such as the many unrooted trees which can be
quite time-consuming to generate. To address these needs we collected some data
provenance queries that describe in words the semantics of the queries we are
interested in:

1. What direct data products did this tree originate from?
2. What are all the data products which have been used to produce this tree?
3. What step produced this tree?
4. What sequence of steps produced this tree?



268 S. Cohen, S. Cohen-Boulakia, and S. Davidson

5. What parameters and steps produced this tree?
6. What alignments in the space of stored data objects were used as inputs to

steps in subsequent workflows?
7. What trees in the data space were inferred using the same sequence of steps,

parameters, and input data?
8. What steps require user input data?

It should be noted that there is a strong connection between questions about
data provenance and general questions about workflow execution, and the biol-
ogist is interested in discovering useful facts about both. Some general workflow
queries are shown below:

– What steps in this workflow did not complete or execute?
– What steps ran concurrently in the same workflow instance?

In this paper, we will concentrate on the first set of queries, the data prove-
nance queries. However, a longer-term goal is to allow biologists to interactively
explore other aspects of a workflow execution without needing to become an
expert in the logging mechanisms of the system.

3 Model of Provenance

Provenance is defined over a workflow execution as a function which takes as
input the identifier of a data object and returns the sequence of steps and input
data objects on which it depends. All data that is produced by some step is called
calculated data. In contrast, user or parameter data is injected into the data space
of the workflow execution by a user; its provenance is whatever information is
recorded about how it was input, e.g. the user who input the data and the time
at which the input occurred. We call this Info(d).

Definition 1. The provenance of a data object d (Prov(d)) is given as:

Prov (d) =
{

(sid, {d1 : P rov(d1), ..., dn : P rov(dn)}) d is calculated data
Info(d) d otherwise

where sid is the id of the step that produced d as output, and di is the id of data
input to the step.

As an example, consider the simple toy workflow in Fig. 2, in which S1 takes
as input {I1, I2}, produces as output {D}, which is taken as input to S2, which
produces as output {O1}. Then

Prov (O1) = (S2, {D : (S1, {I1 : Info(I1), I2 : Info(I2)})})

Note that Prov(d) gives complete information about how the data object came
to be (deep provenance). We could also have defined Prov(d) to consider just the
immediate provenance or n-deep provenance of a data product.



Towards a Model of Provenance and User Views in Scientific Workflows 269

Fig. 2. Example of workflow

Throughout this section, we will use Datalog to define the minimal informa-
tion needed from the workflow system (base predicates) as well as the reasoning
we can perform over that information. We choose Datalog since it is a simple,
declarative language which easily expresses recursive queries; it is thus a natural
model for graph data and queries which entail finding paths. Using known trans-
lations to the relational model, the provenance system described in this paper
could then be implemented using a relational database system which provides
support for transitive closure (e.g. Oracle or DB2). (See [26] for a description
of Datalog and its translation to the relational model and [7] for a discussion of
how to optimize performance.)

Another option would have been to use an object-oriented data model as
suggested by the definition of Prov(d). While this model avoids the problem of
having to flatten nested sets of data, it does not naturally capture transitive
closure. Furthermore, our model of provenance does not need any of the object
features it supports (such as inheritance or polymorphism). We therefore opt for
a simpler and more declarative model.

3.1 Minimal Information to Reason About Provenance

To be able to reason about provenance, we make a number of assumptions about
the information provided by the workflow system:

– Provenance information for user or parameter data is provided.
That is, Info(d) is available.

– Each output data object has a unique id. The notion of unique ids for
output objects is ubiquitous in proposals for scientific workflow. For example,
in [27], data is never overwritten or updated in place, and each version of
data has a different id; in [5], each token has a unique id although two tokens
may correspond to the same data object.

– The system maintains information about steps and the ordering of
input/output operations to steps. In order to reason about provenance,
some sort of logging must be performed by the system. We will discuss how
to achieve this in Section 5.

We therefore model the minimal information that must be provided to a
provenance reasoning system as the following base predicates, where did is the
id of a data object, annot is the provenance information of user or parameter
data (Info(did)), sid is the id of a step, and ts is an integer that captures the
partial order of input and output events to a step:

info(did, annot)
input(sid, did, ts)
output(sid, did, ts)



270 S. Cohen, S. Cohen-Boulakia, and S. Davidson

To allow users to see the value of data objects and obtain information about
the step class of which sid is an execution, we use csid as the id of a step class
and add:

value(did, v)
instanceOf(sid, csid)
infoClass(csid, info)

Using these base predicates, we can express Prov(d) for calculated data using
the following Datalog rule:

prov(did, sid, iid) : −input(sid, iid, tsi) ∧ output(sid, did, tso) ∧ tsi ≤ tso

Note that our definition of provenance includes both the step and input data
to that step. However, it will also be useful to talk about the set of data objects
on which calculated data depends (dP rov), either directly or indirectly, as well
as the set of steps on which were used in calculating the data (sP rov):

dP rov(did, iid) : −prov(did, , iid)
dP rov(did, iid) : −prov(did, , x) ∧ dP rov(x, iid)

sP rov(did, sid) : −prov(did, sid, )
sP rov(did, sid) : −prov(did, , x) ∧ sP rov(x, sid)

Returning to the toy example of Fig. 2, since prov(D, S1, I1), prov(D, S1, I2),
and prov(O1, S2, D) are true, we can infer dP rov(O1, D), dP rov(O1, I1),
dP rov(O1, I2). We can also infer sP rov(O1, S2), sP rov(D, S1) and
sP rov(O1, S1).

3.2 Composite Steps

In many workflow systems, a step class may itself be a workflow. We call such
step classes composite, and their executions composite steps; step classes that
do not contain workflows will be called base, and their executions base steps.
Typically, each input to a composite step class is input to one or more of its
substep classes, and the output of a substep class is either input to another
substep class or becomes the output of the composite step class.

There are several reasons why composite step classes are used in workflows.
First, users may wish to focus on a certain level of abstraction and ignore lower
levels of detail. Second, they may represent levels of “authorization”; users with-
out the appropriate clearance level would not be allowed to see the lower level
executions of a step class.

Definition 2. Given a workflow specification, the user view of a user (or class
of users) U , UserV iew(U), is the set of lowest level step classes that U is entitled
to see.

Note that a user view cannot contain two step classes such that one is contained
in the other. We assume that the user view is valid, i.e. that each of the highest
level step classes in the workflow specification is either in the view, or that at
some lower level all of its contained substeps are in the user view. For example,



Towards a Model of Provenance and User Views in Scientific Workflows 271

consider Fig. 3. In this workflow, SC directly contains SC1 and transitively con-
tains step classes S1 and S2. The composite step class at the highest level, SC ,
has input set {I1, I2} and output set {O1, O2}. Within SC there is a composite
step class SC1 which takes {I1} as input and produces {O1} as output; SC also
contains step class S3 which takes {I2} as input and produces {O2} as output.
Within SC1 there is a step class S1 which takes {I1} as input and produces {D}
as output; {D} is then input to step class S2, which produces {O1} as output.

Fig. 3. Example of composite Step

Three examples of user classes for this workflow are:

– UserV iew(U1) = {SC} (the “black box” user class)
– UserV iew(U2) = {SC1, S3}
– UserV iew(U3) = {S1, S2, S3} (the “admin” user class)

However, the user view {SC1} is not valid since S3 is missing.
A partial ordering <u on user views can be defined using the containment of

step classes.

Definition 3. Given two user views U1 and U2, we say that U2 is a finer level
than U1 (or U1 is a higher level than U2), U1 <u U2, iff
∀s2 ∈ UserV iew(U2) ∃s1 ∈ UserV iew(U1) such that s1 = s2 or s1 contains
s2 either directly or transitively.

For example, U1 <u U2, U2 <u U3 and U1 <u U3.

To answer questions of provenance, we must take the user view into account
and reason about the input and output to steps which are instances of step
classes that are in the user view. That is, we must know the connection between
the specification and the execution of a workflow, as well as the containment
relationship between step classes. We therefore assume that the workflow system
provides the following information:

– The user view of each class of users. A variety of techniques could be
used to capture this information. For example, the GUI in Kepler allows
users to zoom in on steps. We can imagine capturing this information by
taking each composite class, zooming in to the appropriate level, and taking
the union of the resulting classes.

– The input and output to each step, whether composite or base.



272 S. Cohen, S. Cohen-Boulakia, and S. Davidson

Thus we use the following as our base predicates, where sid is the id of a step
(either base or composite), did is the id of a data object, ts captures the partial
order of input and output events to a step, cid is the id of a step class (either
base or composite), and ccid is the id of a composite step class.

Cinput(sid, did, ts)
Coutput(sid, did, ts)
immContains(ccid, cid)
userV iew(u, cid)

Cinput (Coutput) is input (output) extended to composite steps. The rela-
tion contains(ccid, cid), denoting the complete containment relation between
step classes, can be trivially computed as the transitive closure of the immedi-
ately contains relation, immContains. Furthermore, the following constraint on
userV iew expresses the fact that cid is the lowest level that u is entitled to see:
If contains(ccid, cid) and userV iew(u, ccid) holds, then userV iew(u, cid) does
not hold.

It will also be convenient to talk about steps (whether base or composite)
that are allowed to be seen by a particular user:

userInstance(u, sid) : −instanceOf(sid, cid) ∧ userV iew(u, cid)

Using these predicates, we calculate provenance as a function of the user view
as follows:

userP rov(u, did, sid, idid) : −Cinput(sid, idid, tsi) ∧ Coutput(sid, did, tso)∧
tsi ≤ tso ∧ userInstance(u, sid)

We can also redefine the data (step) provenance with respect to a user view,
userDP rov(u, did, iid) (userSP rov(u, did, sid)) using userP rov instead of prov.
(Details are omitted.)

3.3 Reasoning with User Views

We now explore properties of provenance as a function of user view. In particular,
when a user views the execution at a finer level he may see data objects that are
not visible at a higher level which are the output of hidden substeps. Reasoning
about provenance at a finer level will also allow a more precise view of the
provenance of a data object.

For example, in the workflow of Figure 3, from user views U1 and U2 the data
object D is not visible as a data object on which O1 or O2 depends. Furthermore,
at user view U1 both I1 and I2 are seen as data objects on which O1 depends,
while at user views U2 and U3 only I1 is included.
The observation about what data objects d are visible within a user view u can
be formalized as follows:

invisible(d, u) : −output( , d, ) ∧ ¬visible(d, u)
visible(d, u) : −userP rov(u, d, , )
visible(d, u) : −userP rov(u, , , d)



Towards a Model of Provenance and User Views in Scientific Workflows 273

For example, consider the workflow of Figure 3 and the user view U2. Then
userP rov(U2, O1, SC1, I1) and userP rov(U2, O2, S3, I2) hold, meaning that we
can infer visible(O1, U2), visible(I1, U2), visible(O2, U2), and visible(I2, U2).
Furthermore, since output(S1, D, ) holds but not visible(D, U2),
invisible(D, U2) holds. Similarly, we could show that invisible(D, U1) holds.

To formalize the second observation, given data object d and two user views
u1 and u2, let DP rov(u1, u2, d) be the set of all data objects that d depends on
either directly or indirectly as seen in user view u2 that are visible in u1. More
precisely, it is the set of data objects X in ans(X) below (where parameter $U1
is set to u1, $U2 is set to u2 and $D is set to d):

ans(X) : −userDP rov($U2, $D, X) ∧ visible(X, $U1)

As an illustration, consider the workflow of Fig. 3 with $U1=U1, $U2=U3
and $D=O1. Then userDP rov(U3, O1, D), userDP rov(U3, O1, I1) and visible
(O1, U1) hold, but visible(D, U1) does not hold. Thus DP rov(U1, U3, O1)={I1}.

The observation about the refinement of data provenance as a function of user
view can now be stated as follows:

Lemma 1. Given a data object did and two user views u1 and u2, such that
u1 <u u2 and did is visible in u1. Then

DP rov(u1, u1, did) ⊇ DP rov(u1, u2, did).

Returning to our example, recall that U1 <u U3. It can be easily checked that
DP rov(U1, U1, O1)={I1, I2} and thus DP rov(U1, U1, O1)⊇DP rov(U1, U3, O1).

3.4 Discussion

Much of the information (base predicates) that we are assuming are easily ob-
tainable from either the workflow specification (immContains, userV iew, info,
infoClass), or from low-level logging/execution knowledge (input, output and
instanceOf). However, many workflow systems do not keep intermediate data
products, that is value(did, v) may not be available for all did. In this case, the
workflow system may be able to provide only partial information about prove-
nance, i.e. the did of data objects.

The remaining predicates, Cinput and Coutput, are the topic of Section 5.
Is it reasonable to require that the value of all intermediate data objects

be kept? An increasing number of optimization and compression techniques to
efficiently record provenance information have been proposed in the database
community. In particular, [7] exploits the hierarchical structure of data to opti-
mize provenance storage, and gives experimental results to show that provenance
can be tracked and managed efficiently. In the context of scientific workflows,
which are run many times and generate a large number of intermediate results,
the nesting of composite steps and use of user views also gives the ability to
limit the results. However, the results are kept around only if they are visible in
some user view. By specifying appropriate user views, the system can therefore
limit the promises made to users about provenance information.



274 S. Cohen, S. Cohen-Boulakia, and S. Davidson

4 Querying Provenance

We now turn to the queries about provenance introduced in Section 2, and show
that they can be answered using the predicates developed in Section 3. Note that
these queries concern data (1,2,5) and step (3,4) provenance and use immediate
(1,3) as well as deep (2,4,5) provenance information.

In what follows, we assume that the user view is input as parameter $U and
the data object as parameter $D. Examples are given in terms of data object
O4 in the Tree inference workflow of Figure 1.

1. Which data objects have been directly used to produce this result?
ans(X) : −userP rov($U, $D, , X)

If the input user view contains step S4, then the immediate provenance of

O4 given by ans(X) above is {O3}. However, if the input user view contains
steps S4a-d, then ans(X) is {O4c}.

2. What are all the data objects which have been used to produce
this result?
ans(X) : −userDP rov($U, $D, X)

ans returns {O1,O2,O3} if the input user view contains step S4, and

{O1,O2,O3,O4a,O4b,O4c} if it contains steps S4a-d.
3. What step class produced this data product?

ans(X) : −userP rov($U, $D, X, )

If the input user view contains step S4, then ans(X) is {S4}. However, if

the input user view contains steps S4a-d, then ans(X) is {S4d}.
4. What sequence of steps produced this data product?

ans(X) : −userSP rov($U, $D, X) ans returns {S1, S2, S3, S4} if the input

user view contains step S4, and {S1, S2, S3, S4a,S4b,S4c,S4d} if it contains
steps S4a-d.

5. What parameters and steps produced this data product?
The intent of this query is to know the input to each step that led to the
data product. Note that to distinguish parameters from other input data we
need additional information from the workflow system, e.g. the predicates
parameter(d), userInput(d) and calculated(d), which could then be used by
our system in a straightforward way. ans(X, Y ) : −userP rov($U, $D, X, Y ),

parameter(Y)
ans(X, Y ) : −userP rov($U, Z, X, Y ), ans( , Z) Assuming the input user

view contains step S4, ans returns {(S1,G), (S2,O1), (S3,O2), (S4,O3)}. To
answer the original query, this set would be filtered for the second compo-
nent to be a parameter resulting in the empty set (all inputs are calculated
data in this example).

Details of queries 6-8 can be found in [10].



Towards a Model of Provenance and User Views in Scientific Workflows 275

5 Obtaining Cinput and Coutput from Logs

Up to this point, we have assumed that Cinput and Coutput are available to
define the provenance of a data object. We now argue that this information is
achievable using standard nested transaction logging mechanisms, and discuss
how to obtain this information in Kepler, MyGrid and Chimera.

Logging of nested transactions. Using ideas from nested transactions [18], the log
of the workflow system would contain the events – start (s), read (r), write (w),
and commit (c) – not just of base transactions but of transactions within which
they are nested. For example, the following could be the log of the (composite)
transaction T1 which contains subtransaction T2, which in turn contains the
(base) transaction T3:

s(T1), s(T2), r(d1), w(d2), s(T3), r(d2), r(d3), w(d3), c(T3), w(o1), c(T2), c(T1)

In this case, input(sid, did, ts) is computed as the data read and the order in
which it was read. For example, input(T3, d2, 5) could be true. With composite
transactions, the output would be calculated as all the data that is output by
some subtransaction and not input to another subtransaction; the input of a
composite transaction is defined analogously. For example, input(T1, d1, 2) and
input(T1, d3, 5) would be true but input(T1, d2, 6) would not be true.

Note that we can compute Cinput and Coutput from the log events of nested
transactions since it contains the notion of execution of composite steps as well
as base steps.

Kepler. In Kepler, a workflow consists of a collection of nodes called Actors
(corresponding to step classes) which communicate through input and output
ports. Communication occurs through the passing of tokens (corresponding to
data input and output) which are globally unique; tokens are read and written,
and each token is written only once. The model of computation of a workflow is
defined by a Director who mediates communication between actors.

The log associated with this model records the reading and writing of tokens
on ports, which are uniquely associated with Actors [4]. Each execution of an
actor corresponds to a step in the terminology of this paper.

Conceptually, the first read event on a port associated with an Actor begins
the execution (transaction) of that Actor. Subsequent writes by that Actor on
this port depend on all its previous reads, where “previous” is captured by an
integer called a firing. Since this implies that the state (read tokens) of the Actor
gets bigger and bigger as time goes on, the notion of a clear event is introduced
and recorded in the log, the effect of which is to clear the state of the Actor.
Thus any write after the clear event will depend only on the read events since the
state was cleared. In terms of transactions, this can be thought of as committing
a transaction and beginning a new transaction.1

1 This is a simplification of the model, which also uses a notion of “firings” to capture
the set of read tokens on which a write depends rather than an ordering of events.



276 S. Cohen, S. Cohen-Boulakia, and S. Davidson

Using the Kepler log, it is certainly possible to capture input and output.
Moreover, Kepler supports composition of Actors, and enables users to zoom in
and view finer levels of detail of an Actor. However, since the log records only
events of base steps, there is currently no notion of the execution of a composite
step. Thus it is not clear how to calculate Cinput and Coutput for composite
steps. The Kepler group is exploring a variety of approaches to work around this
problem [17].

myGrid. In myGrid [19],2 a workflow is a network of processors and links. A
processor (corresponding to a step class) is a transformation that accepts a set of
input data and produces a set of output data. Several types of processors exists,
one of which is the nested processor. Two kinds of links are considered: data links,
which mediate the flow of data between a data source and sink; and coordination
constraint links, which control the execution of two processors (roughly speaking,
playing the role of a director in Kepler). The log file in myGrid is an XML file
which records global execution information: the user of the workflow, the start
time, the end time and the set of services invocations performed (each invocation
corresponds to a step). Exploiting the nested structure of XML, information is
also provided for each service invocation: start time, end time, parameters of
the service invocations, input data, and output data. Life Sciences Identifiers
(LSIDs) [8] are used to uniquely and persistently identify data resources and
their associated metadata.

An interesting aspect of myGrid is the automatic annotation of provenance
logs with concepts drawn from the myGrid ontology. The COHSE3 system per-
forms this task by augmenting documents with links based on the semantic
content of those documents. This process allows users to dynamically generate
a hypertext collection of provenance documents, data, services, and workflows
based on their associated concepts, and to perform reasoning over the ontology
(see [28], [29], and [1] for more details).

Using the myGrid log, it is indeed possible to capture input and output. While
the current literature does not focus on the provenance of nested processors, the
intrinsically nested structure of the myGrid log file seems naturally suitable
for capturing nested transactions, thus allowing the calculation of Cinput and
Coutput.

Chimera. In Chimera [12],4 a transformation is a program (script file) and an
execution of a transformation is a derivation, corresponding to a step class and
a step, respectively. Data products are represented as abstract typed datasets
(virtual data) and as materialized replicas. Derivations can be connected to form
workflows that consume and produce replicas (input and output data).

2 We omit here the internal relationships between myGrid, the Scufl language, Taverna
and freefluo tools.

3 Conceptual Open Hypermedia Services Environment.
4 We omit here the internal relationships between GriPhyN, Chimera, Pegasus and

Condor.



Towards a Model of Provenance and User Views in Scientific Workflows 277

The Chimera virtual data schema defines a set of relations used to represent
and capture descriptions of how a program can be invoked, and to record its
potential and/or actual invocations. Upon execution, workflows automatically
create invocation objects for each derivation in the workflow, annotated with the
information of the runtime process. Invocation objects are an annotation scheme
for representing provenance information and thereby providing a mechanism for
linking input and output data products.

In Chimera, provenance information can be retrieved from the Virtual Data
Catalog (VDC) [13] expressed in the Virtual Data Language (VDL). VDL sup-
ports both recursive searches and can output all the derivations in the system
that produced a particular dataset. VDL interacts with an end-user query sys-
tem, the Virtual Data Browser (VDB), to interactively access the catalog.

In the current implementation of Chimera, nested transformations are allowed
since each transformation can call other transformations. As each derivation has
its own provenance information, it should be possible to populate Cinput and
Coutput.

6 Conclusion

This paper examines data provenance through the prism of large-scale scientific
applications. Motivated by phylogenetic analyses which produce volumes of data,
our research extends existing ideas of data provenance to scientific workflows.
In this context, we formulate a model for provenance and define notions of data
provenance, step provenance, and user views for computing user-oriented queries
over workflow executions.

User views are especially helpful for reasoning about data provenance through
nested executions. They are essential for defining the level of detail of a prove-
nance query and determining what data must be kept by the system. As such,
we devise ways in which a user can effectively query a workflow execution in
an intuitive fashion without needing to become an expert in the system’s log-
ging facility. We demonstrate the expressiveness of our model by answering a
collection of queries supplied by systematic biologists.

Our model is simple and generic enough to capture information that is (or soon
will be) available in existing scientific workflow system, and we demonstrate this
with Kepler, myGrid, and Chimera. From this, we show that a scientific workflow
system which provides basic execution logging could implement our model and
benefit from our approach.

We are currently exploring new ways to improve the expressiveness of our
model. First, we will consider the general workflow queries in Section 2 related
to partial and concurrent executions. Second, we will augment our model with
additional semantics such as object typing to allow finer-grained queries, and
explore the use of an object-oriented data model augmented with transitive
closure. Third, we wish to experiment with storage models such as that proposed
by the Pasoa project [20] to improve query performance.



278 S. Cohen, S. Cohen-Boulakia, and S. Davidson

Acknowledgment

The authors wish to thank the members of the Kepler group, particularly
Bertram Ludäscher, Timothy McPhillips, and Shawn Bowers, for the many fruit-
ful discussions about scientific workflows.

References

1. Alpdemir, N., Mukherjee, A., Paton, N. W., Fernandes, A., Watson, P., Glover,
K., Greenhalgh, C. Oinn,T.,Tipney,H: Contextualised Workflow Execution in my-
Grid, Proc of European Grid Conference, Springer-Verlag, LNCS 3470, 444-453,
2005.

2. Berry, D., Buneman, P., Wilde, M., and Ioannidis, Y. editors. e-Science Workshop
on Data Provenance and Annotation, National e-Science Centre, Edinburgh, 2003.

3. Bhagwat, D., Chiticariu, L., Tan W. C., Vijayvargiya,G.: An Annotation Man-
agement System for Relational Databases, Proc. Conference on Very Large Data
Bases (VLDB), 900–911, 2004.

4. Bowers,S., McPhillips, T., Ludäscher, B., Cohen, S., Davidson, S.B.: A Model for
User-Oriented Data Provenance in Pipelined Scientific Workflows. To appear in
Proc. of IPAW’06 International Provenance and Annotation Workshop, 2006.

5. Bowers, S., Ludäscher, B.: Actor-Oriented Design of Scientific Workflows, Proc of
ER’05, International Conference on Conceptual Modeling, 369–384, 2005.

6. Buneman, P., Khanna, S., Tan, W.: Why and Where: A Characterization of Data
Provenance, Proc. of Int. Conf. on Database Theory (ICDT), 316–330, 2001.

7. Buneman, P., Chapman, A., Cheney, J.: Provenance Management in Curated
Databases, To appear in Proc. of SIGMOD International Conference on Manage-
ment of Data, 2006.

8. Clark, T., Martin, S., Liefeld, T.: Globally distributed object identification for
biological knowledgebases. Briefings in Bioinformatics, 5(1) 59–70, 2004.

9. Cohen-Boulakia, S., Lair, S., Stransky, N., Graziani, S., Radvanyi, F., Barillot, E.,
Froidevaux, C.: Selecting biomedical data sources according to user preferences,
Bioinformatics, Proc. ISMB/ECCB04, 20, i86-i93, 2004.

10. Cohen, S., Cohen-Boulakia, S., Davidson, S.: Towards a Model of Provenance in
Scientific Workflows, University of Pennsylvania, Internal Report, #MS-CIS-06-03,
2006.

11. Davidson, S., Crabtree, J., Brunk, B., Schug, J., Tannen, V., Overton, C., Stoeck-
ert, C.: K2/Kleisli and GUS: Experiments in integrated access to genomic data
sources IBM Systems Journal, 2001.

12. Foster, I., Vockler, J., Woilde, M., Zhao, Y.: Chimera: A Virtual Data System for
Representing, Querying, and Automating Data Derivation, Proc. of the 14th Intl.
Conf. on Scientific and Statistical Database Management (SSDBM), 2002.

13. Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: The Virtual Data Grid: A New Model
and Architecture for Data-Intensive Collaboration Proc of Conference on Innova-
tive Data System Research (CIDR), 2003.

14. Greiner, U., Mller, R., Rahm, E., Ramsch, J., Heller, B., Lffler, M.: AdaptFlow:
Protocol-based Medical Treatment Using Adaptive Workflows. Methods of Infor-
mation in Medicine, 44, 80–88, 2005.

15. Higgins, D. G., Sharp, P. M.: Clustal: A package for performing multiple sequence
alignment on a microcomputer. Gene 73: 237-244, 1998.



Towards a Model of Provenance and User Views in Scientific Workflows 279

16. Kiepuszewski, B., ter Hofstede, A. H. M., van der Aalst, W. M. P. : Fundamentals
of control flow in workflows. Acta Inf., 39(3), 143–209, 2003.

17. McPhillips, T., Bowers,S.: An approach for pipelining nested collections in scientific
workflows. SIGMOD Record, 34(3), 12–17, 2005.

18. Moss, J.E.B.: Nested Transactions: An Approach to Reliable Distributed Com-
puting, Ph.D. dissertation, Dept. of Electrical Engineering and Computer Science,
MIT, April 1981.

19. Oinn, T.M., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, R.T.,
Carver, K., Glover, Pocock, M.R., Wipat, A., Li, P. : Taverna: a tool for the
composition and enactment of bioinformatics workflows, Bioinformatics, Proc.
ISMB/ECCB03, 20(1), 3045–3054, 2003.

20. The Pasoa Project Luc Moreau et al. http://www.pasoa.org/
21. Phylip Programs and Documentation:

http://evolution.genetics.washington.edu/phylip/phylip.html.Swofford
22. Rowe, A., Kalaitzopoulos, D., Osmond, M., Ghanem, M., Guo Y.: The discovery

net system for high throughput bioinformatics Bioinformatics, 19(1), i225–i231,
2004.

23. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Record, 34(3), 31–36, 2005.

24. Swofford D. L: PAUP*: Phylogenetic Analysis Using Parsimony (*and other meth-
ods). Sinauer Associates, Sunderland, MA, 2000.

25. Targino, R., Cavalcanti, M.C., Mattoso M.: An Environment to Define and Execute
In-Silico Workflows Using Web Services. Proc. of DILS 2005, Data Integration in
the Life Sciences, Springer-Verlag, LNBI 3615, 288–291, 2005.

26. Ullman, J.D., Widom, J.: A First Course in Database Systems. Prentice-Hall, 1997.
27. Widom, J.: Trio: A System for Integrated Management of Data, Accuracy, and

Lineage. CIDR’05, Conference on Innovative Data Systems Research, 262–276,
2005.

28. Zhao, J., Wroe, C., Goble, C., Stevens, R., Quan, D. and Greenwood, M.: Using
Semantic Web Technologies for Representing e-Science Provenance, Proc of Se-
mantic Web Conference (ISWC), 92-106, 2004.

29. Zhao, J., Goble, C., Stevens, R., Bechhofer, S.: Semantically Linking and Browsing
Provenance Logs for e-Science. Proc of International Conference on Semantics of
a Networked World (IC-SNW), Springer-Verlag, LNCS 3226, 157–174, 2004.

30. http://www.extreme.indiana.edu/swf-survey/



An Extensible Light-Weight XML-Based
Monitoring System for Sequence Databases

Dieter Van de Craen�, Frank Neven, and Kerstin Koch

Hasselt University and Transnational University of Limburg
School for Information Technology
firstname.lastname@uhasselt.be

Abstract. Life science researchers want biological information in their
interest to become available to them as soon as possible. A monitoring
system is a solution that relieves biologists from periodic exploration of
databases. In particular, it allows them to express their interest in cer-
tain data by means of queries/constraints; they are then notified when
new data arrives satisfying these queries/constraints. We describe a se-
quence monitoring system XSeqM where users can combine metadata
queries on sequence records with constraints on an alignment against a
given source sequence. The system is an XML-based solution where con-
straints are specified through search fields in a user-friendly web interface
and which are then translated to corresponding XPath-expressions. The
system is easily extensible as addition of new databases to the system
then only amounts to the specification of new mappings from search fields
to XPath-expressions. To protect private source sequences obtained in
labs, it is imperative that researchers do not have to upload their se-
quences to a general untrusted system, but that they can run XSeqM
locally. To keep the system light-weight, we therefore introduce an op-
timization technique based on query containment to reduce the number
of XPath-evaluations which constitutes the bottleneck of the system. We
experimentally validate this technique and show that it can drastically
improve the running time.

1 Introduction

Motivation. Due to the increase in the speed of sequencing of genes and pro-
teins, sequence databases, such as Genbank, double in size every two years [26].
This rapid expansion of data motivates researchers to repeat search queries over
time. Indeed, a BLAST-search [13] that does not produce any useful result to-
day might do so tomorrow. In this paper, we therefore propose a user-friendly
sequence monitoring system XSeqM (eXtensible Sequence Monitor) that relieves
researchers from repeating such searches over time.

We provide two motivating examples:

1. Researchers in a lab have obtained one or a few sequences of genes or pro-
teins for which a BLAST-search only gives similarities for small regions of

� Corresponding author.

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 280–296, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



An Extensible Light-Weight XML-Based Monitoring System 281

the sequence. No highly similar, annotated sequences are available in any
database which might give hints for the function of the gene or protein.
Therefore, the researchers regularly repeat BLAST-searches against several
databases to find genes or proteins with a higher similarity.

2. A researcher has obtained a gene g expressed in the central nervous system
(CNS) of the rainbow trout and is interested to learn about genes similar to
g which are expressed in the peripheral nervous system (PNS) in any fish
organism or mammal. She therefore repeats a BLAST-search with the gene
g on a weekly basis.

The two tasks described above are tedious and time consuming when executed
manually: not only the BLAST-searches themselves, but also the post-processing
of the BLAST-reports (if any) to sort out relevant matches from irrelevant ones.
Indeed, in situation (1), a match could be irrelevant as the matched part of the
sequence is too small or the likelihood of the match expressed by the E-value
is too large. In situation (2), all BLAST-hits from non-fish and non-mammal
species should be discarded together with those that are not mRNA and that
do not refer to the PNS.

A Solution: The XSeqM-System. In the XSeqM-system users can regis-
ter BLAST-requests combined with constraints on the metadata of a sequence
record. All requests are checked locally by the system after retrieval of the
daily updates from the respective databases and users are informed, for instance
through email, when relevant results are found. Figure 2 shows part of the mon-
itor request related to situation (2). In brief, every such request specifies the
following information:

– a database of interest (e.g., Genbank, SwissProt, . . . ),
– a sequence of interest (e.g., the gene g),
– constraints on the metadata (e.g., classification should contain the string

‘fish’ and molecular type should equal ‘mRNA’)
– an alignment program and its parameters (e.g., BLAST with word size 11

and matrix PAM30)
– relevance constraints (e.g., size of match should be greater than 20 and E-

value should be smaller than e−10).

The XSeqM-system has the following characteristics:

1. XSeqM is light-weight. It can be installed locally in a lab on a computer with
average system requirements. This is important, as, referring to situation (1)
above, research labs can be hesitant to upload their newly found sequences in
a public system as some of them might be candidates for a patent application.

2. XSeqM is user-friendly as it hides all use of XML: users interact with the
system through a Web-interface where search fields can be combined using
the logical operators, much like other query and monitoring systems such as
SRS and PubCrawler [22].

3. XSeqM is a flexible XML-based solution to which any sequence database can
be added that makes updates available and whose format can be transformed



282 D. Van de Craen, F. Neven, and K. Koch

into XML. Almost all sources nowadays allow to export information in XML-
format or there are third party tools available to convert existing formats to
XML. The administrator determines for every sequence database a number of
search fields. For every search field f , an XPath-expression Pf is created that
selects the corresponding value in every XML-file in the update. Table 1, for
instance, lists the interesting search fields for a GenBank record and the cor-
responding XPath-expressions. Every user request is then translated under
the hood to a Boolean combination of XPath-expressions. Similarly, rele-
vance constraints on BLAST-reports are translated into XPath-expressions
over the XML-representation. Therefore, in principle, any XPath-expressible
constraints can be used.

Efficient Evaluation. The main technical part of the paper deals with efficient
execution of all monitoring requests. In brief, the system executes the following
steps. Let m1, . . . , mk be all monitoring requests with corresponding constraints
p1, . . . , pk on the metadata, i.e. Boolean combinations of XPath-expressions. For
every sequence record s in the update, we need to check which expressions pi

match s. When pi is successfully matched, we BLAST the sequence in s against
the sequence in mi. When all relevance constraints of mi on the BLAST-report
are satisfied, the owner of request mi is alerted. As an alignment of sequences
through BLAST is expensive, it is imperative to first check the metadata con-
straints and only start BLAST for those sequences which are selected.

As every local lab is considered to have its own system, we consider systems
of moderate size (say, a few thousands of monitoring requests). Daily updates to
Genbank vary in size from 50 to 200 Megabytes (zipped): these contain between
30000 and 150000 sequences. The bottleneck of the system is in the evaluation
of the constraints p1, . . . , pk for every sequence record s in the update. A direct
approach using a standard XPath-evaluator like Xalan[1] takes more than 24
hours and is therefore not an option. Powerful fast streaming XPath-engines have
been proposed over the past years [21,12] which can handle millions of XPath-
expressions. Unfortunately, we cannot use these engines directly: to ensure high
throughput streaming engines do not consider full XPath. In particular, they
do not consider arbitrary Boolean combinations of XPath-expression or allow to
test whether a certain given string occurs as a substring of a text element. We
therefore make use of the state-of-the-art evaluator YFilter [18,19] as a first pre-
processing step to extract string-values from sequence records. More precisely, by
evaluating for every search field the corresponding expression Pf on the update,
we get for every sequence record a complex value representation on which the
metadata constraints can be checked. E.g., Table 2 contains such a representation
for the GenBank record of Figure 1 through the XPath expressions in Table 1.
In a second step, we then evaluate every pattern pi on this representation. An
additional advantage of this method is that more advanced pattern matching
on string values can be used than is available in XPath. For instance, one could
require that the string value matches a given regular expression.

We consider an optimization based on containment of constraints. As the sys-
tem runs at a local lab, chances are high that many constraints on the metadata



An Extensible Light-Weight XML-Based Monitoring System 283

Table 1. Search fields for a GenBank record and corresponding XPath-expressions

f Pf

organism /p/e[@class=”source”]/Qualifier[@value-type=”organism”]/@value

accession /p/@ic-acckey

gi /p/Attribute[@name=”primary id”]/@content

author name /p/q[@title=”Sequence References”]/Reference/RefAuthors/text()

title /p/q[@title=”Sequence References”]/Reference/RefTitle/text()

keyword /p/Attribute[@name=”keyword”]/@content

comment /p/Attribute[@name=”comment”]/@content

classification /p/Attribute[@name=”classification”]/@content

Feature key /p/e/@class

Gene name /p/e[@class=”gene”]/Qualifier[@value-type=”gene”]/@value

Protein name /p/e[@class=”cds”]/Qualifier[@value-type=”product”]/@value

chromosome /p/e[@class=”source”]/Qualifier[@value-type=”chromosome”]/@value

molecular type /p/e[@class=”source”]/Qualifier[@value-type=”mol type”]/@value

tissue type /p/e[@class=”source”]/Qualifier[@value-type=”tissue type”]/@value

tissue library /p/e[@class=”source”]/Qualifier[@value-type=”tissue lib”]/@value

cell line /p/e[@class=”source”]/Qualifier[@value-type=”cell line”]/@value

development stage /p/e[@class=”source”]/Qualifier[@value-type=”dev stage”]/@value

EC Number /p/e[@class=”cds”]/Qualifier[@value-type=”EC number”]/@value

p /Bsml/Definitions/Sequences/Sequence

e Feature-tables/Feature-table[@title=”Features”]/Feature

q Feature-tables/Feature-table

are related. For instance, a constraint could require that the organism should
contain the string ‘Oncorhynchus’ while another query could require that the or-
ganism should equal ‘Oncorhynchus mykiss’ and the tissue type equals ‘brain’.
Clearly, the second constraint implies the first. So, we know that the first con-
straint is true when the second is, and the second is false when the first is. Our
optimization technique exploits these ideas to reduce the number of evaluations.
More precisely, we define a graph structure that captures the relationships be-
tween the constraints and consider two forms of propagation: false propagation
and true propagation. We experimentally show that false propagation outper-
forms true propagation and the pure streaming approach.

Finally, we discuss how to incrementally maintain the containment graph. It
never has to be computed from scratch. The insertion operation is time con-
suming as in the worst case it involves a linear number of containment checks
(a coNP-hard problem [20]). Luckily only a limited number of insertions are
expected on a daily basis, say at most hundred, which for a system already
containing 5000 requests can be done in less than 100 minutes. In case a larger
number of insertions is required, we discuss a technique that accelerates the
containment check at the expense of introducing more requests: constraints are
transformed into disjunctive normal form, testing containment of conjuncts can
then be done in linear time. For instance, adding 100 request to a containment
graph with 5000 nodes then only takes 12 seconds.



284 D. Van de Craen, F. Neven, and K. Koch

Table 2. Complex value representation of the GenBank record in Figure 1

f values
organism {“Oncorhynchus mykiss”}
accession { “AM181351” }

gi { “84993308” }
author name { “Zarkadis,I.K. and Marioli,D.”, “Zarkadis,I.K.” }

title { “Cloning of the vitronectin gene in rainbow trout”, “Direct
Submission” }

keyword { “vitronectin protein 1”, “vtn1 gene” }
comment { }

classification { “mykiss Oncorhynchus Salmonidae Salmoniformes Protacan-
thopterygii Euteleostei Teleostei Neopterygii Actinopterygii Eu-
teleostomi Vertebrata Craniata Chordata Metazoa Eukaryota” }

Feature key { “source”, “gene”, “cds” }
Gene name { “vtn1” }

Protein name { “vitronectin protein 1” }
chromosome { }

molecular type {“mRNA”}
tissue type { “liver” }

tissue library { }
cell line { }

development stage { }
EC Number { }

Outline. This paper is organized as follows. In Section 2, we survey other mon-
itoring approaches. Section 3 introduces XML and XPath. Section 4 gives an
overview of XSeqM. In Section 5, we outline several evaluation strategies. Sec-
tion 6 reports on our experiments. In Section 7, we discuss the incremental
maintenance of the containment graph. We conclude in Section 8.

2 Related Work

Existing alerting systems like BioMail, JADE or Science Direct are used for
literature alerts [3,4,9]. They search the PubMed database in given intervals and
alert users via email if new publications matching special keywords are available
[25]. The only system integrating query possibilities for Genbank in addition
to literature alerts is PubCrawler [22,23]. PubCrawler provides a user with the
possiblity to define two types of queries. The first type is a keyword search and
the second is a neighborhood query. With a neighborhood query a user can
express his interest in articles or sequences that are similar to given articles
or sequences already present in the database. A limitation of this approach is
that the user can not enter an unpublished sequence which has no identifier
assigned yet. Also, advanced options in the comparison with other sequences are
not provided, e.g., the minimal length of a match or the E-value. XSeqM does



An Extensible Light-Weight XML-Based Monitoring System 285

provide these possibities and allows for the combination of a keyword search and
an alignment with any given sequence.

XML filtering systems evaluate a set of queries against a stream of documents.
The XMLTK system [21] combines all path expressions into a single deterministic
finite automaton. YFilter [18,19], the successor of XFilter [12], combines all
expressions in one nondeterministic finite automaton. These systems thus employ
a finite state automaton for all the XPath-expressions. The XML stream is parsed
by a SAX parser and the SAX events are streamed through the finite state
automaton. A query matches a document if during parsing an accepting state
for that query is reached. The main limitation of these systems compared to
XSeqM is that they do not support full XPath. As the translation of user queries
in XSeqM can result in complex XPath-expressions, these systems can not be
applied directly in our situation.

In [14,15] and [24] optimization of navigational queries on life science sources
is investigated. In this setting alternate paths are possible to evaluate a query.
The focus in [14,15] is on finding a set of paths that maximizes the number of
results while satisfying a constraint on the evaluation cost. Minimizing the total
number of accesses to sources when evaluating multiple queries in batch mode
is discussed in [24]. The goal of XSeqM differs from these as we want to monitor
multiple sources seperately rather then answering queries over multiple sources.

3 XML and XPath

The eXtensible Markup Language (XML) is a standard for data exchange on
the Web [10]. Most bioinformatics data formats can be converted into an XML
representation. Numerous XML formats for a wide range of biological data are
available. Some examples are BSML, SPTr-XML, GO-XML,. . . [16].

XPath is an XML pattern language for locating information in XML docu-
ments [17]. In particular, XPath can retrieve the value of elements or attributes
and can test whether that value satisfies a certain condition. We give an example
of both. The expression //Attribute[@name="classification"]/@content,
for instance retrieves the classification of an entry as the actual classification
is the value of the content attribute of an Attribute element that has a name
attribute with value ‘classification’. The expression

boolean(//Attribute[@name=”classification” and contains(@content,”Mammalia”])

checks whether the classification contains the string ‘Mammalia’. XPath can also
be used to query the XML-representation of a BLAST-report. For instance, the
expression //Hit[Hit num/text()="1"]/Hit hsps/Hsp/Hsp evalue/text()
selects the E-value of the first hit.

4 Monitoring System

We detail the three different components of XSeqM which are graphically illus-
trated in Figure 3.



286 D. Van de Craen, F. Neven, and K. Koch

LOCUS AM181351 674 bp mRNA linear VRT 16-JAN-2006

DEFINITION Oncorhynchus mykiss partial mRNA for vitronectin protein 1 (vtn1
gene), isolated from liver.

ACCESSION AM181351

VERSION AM181351.1 GI:84993308
KEYWORDS vitronectin protein 1; vtn1 gene.

SOURCE Oncorhynchus mykiss (rainbow trout)
ORGANISM Oncorhynchus mykiss

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Actinopterygii; Neopterygii; Teleostei; Euteleostei;
Protacanthopterygii; Salmoniformes; Salmonidae; Oncorhynchus.

REFERENCE 1
AUTHORS Zarkadis,I.K. and Marioli,D.

TITLE Cloning of the vitronectin gene in rainbow trout
JOURNAL Unpublished

REFERENCE 2 (bases 1 to 674)

AUTHORS Zarkadis,I.K.
TITLE Direct Submission

JOURNAL Submitted (11-JAN-2006) Zarkadis I.K., Dept. of Biology, School of
Medicine, University of Patras, Rion, Panepistimioupolis, ...

FEATURES Location/Qualifiers
source 1..674

/organism="Oncorhynchus mykiss"

/mol_type="mRNA"
/db_xref="taxon:8022"

/tissue_type="liver"
gene <1..>674

/gene="vtn1"

CDS <1..>674
/gene="vtn1"

/codon_start=1
/product="vitronectin protein 1"

/protein_id="CAJ57657.1"
/db_xref="GI:84993309"
/translation="SCCMDF..."

ORIGIN
1 agctgctgca tggacttcga cagtgcctgc cctaggaaga tttcccgcgg tgacacattt

...
661 tgtgtgcgct tgac

Fig. 1. Example GenBank entry

1. The Input Module consists of the WWW Interface and the Query Translation
Module. As illustrated in Figure 2(top), a query is created in the WWW In-
terface by uploading a sequence and specifying search terms in search fields.
These search fields are then linked together by selecting the appropriate
logical connectors: AND, OR and NOT, and parentheses. This method of
operation is similar to the one used in other query and monitoring systems
such as SRS and PubCrawler. Queries entered by users are then translated
by the Query Translation Module to a Boolean formula and a mapping from
which the corresponding XPath expression can be constructed. An example
of part of this translation is given in Figure 2(bottom). The user therefore
does not have to be aware of the underlying technology used. The monitor
request is stored in the local repository.

2. The Evaluation Module is responsible for the actual evaluation of the mon-
itor requests. It consist of the Request Evaluator, the Alignment Module
and the Report Generator. When the Evaluation Module receives an update
of a database, say GenBank, the monitor requests concerning GenBank are



An Extensible Light-Weight XML-Based Monitoring System 287

fetched from the local repository. The evaluation then proceeds as follows.
First, the Request Evaluator evaluates the metadata constraints of the moni-
toring requests on all sequence records in the update. The Alignment Module
then aligns every selected sequence with the corresponding source sequences.
Finally, the Report Generator constructs a report from every BLAST-report
that satisfies the relevance constraints and notifies the owner of the monitor
request.

3. The Update Module consist of the BioDBInterface and the XML Converter
Module. The BioDBInterface Module checks at regular timepoints whether
updates to some of the monitored databases are available. If such an update is
available, then the BioDBInterface Module fetches this update and passes it
on to the Evaluation Module. Despite the fact that more and more biological
data is available as XML, not all data is. In such a case, the XML Converter
Module will convert the update into an XML-format.

5 Evaluation Strategies

We provide an abstract view of the different parts of the evaluation algorithm.
Let m1, . . . , mk be an enumeration of all monitoring requests. Every request
mi = (pi, si, ri) consists of a metadata constraint pi, a sequence si, and a rele-
vance constraint ri. Let u1, . . . , u� be an enumeration of sequence records con-
stituting an update. The system provides the following steps:

1. Compute the set of pairs N = {(j, i) | uj matches pi}.
2. For every (j, i) ∈ N , align the sequences uj and si through BLAST resulting

in a BLAST-report Rj,i.
3. When Rj,i matches ri, warn the owner of request mi.

The bottleneck of the system is located in step (1) above: testing the metadata
constraints. When M and N are the number of monitoring requests and the
number of sequence records in an update, respectively, then M × U constraints
need to be checked. We consider systems where M can be 5000 and U can be
105. Step (2) can be evaluated quite fast (on average 104 pairs of sequences can
be aligned with BLAST on a local system in less then half a minute). For step
(3), the same techniques as for step (1) can be used, although in general this step
can be done quite fast as the number of BLAST-reports will be much smaller
than M × U . In the rest of this section, we outline several evaluation strategies
for step (1) which are experimentally evaluated in the next section.

5.1 Naive Brute Force Evaluation

The first evaluation strategy is a simple brute force method which tests every
constraint pi for every entry in the update. To evaluate the XPath-expressions,
we use Xalan [1].



288 D. Van de Craen, F. Neven, and K. Koch

Blast
ID sequence Evalue wordsize MatchSize

...
51 gcagtgcc... 10 11 20

...

Mapping
ID variable querytype keyword value

...
51 v 51 1 contains classification fish
51 v 51 2 contains tissue type brain
51 v 51 3 equals molecular type mRNA

...

Query
ID userID database formula

...
51 8 genbank v 51 1 & v 51 2 & v 51 3

...

Fig. 2. Example of a monitoring request and its translation

5.2 XML Streaming Approach

An XML stream query processing system takes as input a stream of XML doc-
uments on which it evaluates queries simultaneously. Filtering systems such as
XFilter, YFilter, XMLTK, . . . are freely available and provide efficient evalua-
tion of large numbers of XPath-expressions. The problem with these systems is
that the XPath fragment they consider is not powerful enough to express our



An Extensible Light-Weight XML-Based Monitoring System 289

Request Evaluator Alignment Module

Report Generator

Evaluation Module

WWW interface QueryTranslation

Input Module

DB

local repository

BioDBInterface XML Converter

GenBank PDBSwissProt

Update Module

. . .

Fig. 3. Overview of the modules

user constraints. However, if we look at the number of search fields that can be
queried in our setting, we observe that this number is small (typically 10 to 20)
and fixed in advance. So, instead of evaluating the XPath-expressions generated
from the user constraints directly on the updates, we proceed in two steps:

1. Using YFilter, we retrieve all the values for the search fields for a sequence
record of an update and create for each record a complex value representa-
tion. E.g., Table 2 contains a complex value representation of the GenBank
record of Figure 1 obtained through the XPath expressions in Table 1.

2. In a second step, we evaluate the metadata constraints on this complex value
representation. For instance, the constraint

classification.contains(‘Teleostei’) AND tissue type.contains(‘brain’)
AND molecular type.contains(‘mRNA’)

is not satisfied on the record in Table 2 as the tissue type does not contain
brain. The semantics of the contains(‘s’) operator is that at least one of the
strings in the set should contain the string ‘s’ as a substring.

5.3 Query Containment

The evaluation of expressions in step two above is still naive: all expressions
are matched against all entries in the update. As the XSeqM-system runs at a
local lab where researchers are working on related topics, chances are high that
some constraints on the metadata are related. A useful notion in this context is
the following: a constraint p is contained in a constraint p′, denoted p ⊆ p′, if
whenever a sequence record satisfies p it also satisfies p′. For instance, let p be
the constraint

organism.equals(‘Oncorhynchus mykiss’) AND tissue type.contains(‘brain’)
AND molecular type.contains(‘mRNA’)



290 D. Van de Craen, F. Neven, and K. Koch

and let p′ be the constraint organism.contains(‘Oncorhynchus’). Then it should
be clear that every record which satisfies p also satisfies p′.

So, containment checking of constraints basically reduces to containment
checking of propositional logical formulas. However, some care is needed when
dealing with the ‘contains’ and ‘equals’ predicate referring to the same search
field. We use the following algorithm that we illustrate on the above example:

– Rewrite the constraints p and p′ to logical formulas q and q′ over different
propositional symbols.

That is, q equals a ∧ b ∧ c and q′ equals d. Here, a, b, c and d stand
for organism.equals(‘Oncorhynchus mykiss’), tissue type.contains(‘brain’),
molecular type.contains(‘mRNA’), and organism.contains(‘Oncorhynchus’),
respectively.

– Let γ be a propositional formula initially set to true. For every pair of propo-
sitional variables x and y referring to the same search field, test whether the
constraint corresponding to x is contained in the constraint corresponding
to y. If so, add ¬x∨y to γ. The intuition is that γ restricts the set of possible
truth assignments to those that correspond to the semantics of the ‘contains’
and ‘equals’ predicates. In particular, the formula ¬x ∨ y only accepts truth
assignments that assign true to y when x is also true, which encodes that x
implies y.

The only variables referring to the same search field are a and d. Clearly,
a is contained in d as every record satisfying organism.equals(‘Oncorhynchus
mykiss’) also satisfies organism.contains(‘Oncorhynchus’). So, γ is the for-
mula ¬a ∨ d.

– Now, p ⊆ p′ iff q ∧ ¬q′ ∧ γ is unsatisfiable.
So for our example, we need to test that a ∧ b ∧ c ∧ ¬d ∧ (¬a ∨ d) is not

satisfiable, which is the case. Indeed, the only way to satisfy the first four
conjuncts is to set a, b, and c true and d false, but this is prohibited by the
last conjunct.

In general testing unsatisfiability is coNP-complete [20]. Fortunately, the ex-
pressions we consider are very small. We make use of the state-of-the-art SAT-
solver Limmat [6]. As our formulas are in general not in CNF, we use Lim-
boole [5], a front end to Limmat that allows to check unsatisfiability of arbitrary
formulas and not just formulas in CNF.

The containment DAG of a set of constraints is a directed acyclic graph
(DAG) without any transitive edges where every node represents a set of equiv-
alent constraints and there is an edge from node n to node n′ if every expression
in n is contained in every expression in n′. Note that it is sufficient to test if one
expression from n is contained in one expression from n′. A source is a node
without incoming edges; a sink is a node without outgoing edges. Note that a
DAG can have multiple sources and sinks.

We make the following observations:

– to check whether a sequence record matches the expressions in a node n, it
suffices to test this for one expression in n;



An Extensible Light-Weight XML-Based Monitoring System 291

– when an expression in n is true for a sequence record, then all expressions
in descendant nodes of n are true for that record; and

– when an expression in n is false for a sequence record, then all expressions
in ancestor nodes of n are false for that record.

In the following, the evaluation of a node against a sequence record corre-
sponds to selecting one of the equivalent expressions the node represents and
matching this expression against the record. The above observations lead to two
related optimization techniques allowing to discard nodes in the containment
DAG:

1. false propagation: start evaluation in the sinks, when a node evaluates to
false all ancestors can be discarded as they evaluate to false, when the node
evaluates to true all parents have to be addressed;

2. true propagation: start evaluation in the sources, when a node evaluates
to true all descendants can be discarded as they evaluate to true as well,
when the node evaluates to false all its children have to be addressed.

Note that a node can be reached by multiple paths. So, to avoid multiple
evaluations of nodes every node carries a bit indicating whether the node is
already evaluated or not. It is clear that if expressions seldom match entries in
the update then false propagation will result in a strong decrease in the number
of actual evaluations. In the case that expressions frequently match entries, the
use of true propagation can be advantageous.

6 Experiments

In this section, we experimentally validate our optimization techniques. We cre-
ated monitoring requests resulting in three types of containment DAGs T1, T2,
and R (cf. Figure 4). We repeated our experiments for different numbers of
monitoring request (from 1000 till 5000). We only report on the case with 5000
requests as all experiments produced similar results. The experiments were per-
formed on a Pentium IV (3.0 GHz) architecture with 1 GB of internal memory
running under Linux 2.6. All programs are written in Java.

The metadata constraints were created by extracting possible values out of
available updates. The first type of containment DAG (T1) is specially tailored
for false propagation. Part of a DAG of type T1 is given in Figure 4(top). It is
a reversed tree consisting of a small number of sinks. It is constructed by only
making use of AND-operators. The idea is that every sink represents the most
general constraint which is subsequently refined by additional constraints when
progressing upwards. For instance, a sink may state that the organism in the
update matches ‘Oncorhynchus mykiss’, its parent may refine this by adding
another constraint, namely that the molecular type must be ‘mRNA’. Trees can
be disjoint, for instance, when each of them corresponds to an organism.

The shape of the second type of containment DAG (T2) is the reverse of the
first one and is ideal for true propagation. Part of a DAG of this type is given in



292 D. Van de Craen, F. Neven, and K. Koch

Fig. 4. Fragment of example containment graphs T1 (top), T2 (middle), and R (bot-
tom). Edges point downwards.

Figure 4(middle). The idea is that each source is the most restrictive constraint
which gets relaxed by every descendant.

The last type of containment DAG (R) was created by generating random
constraints (using AND, OR, and NOT-operators) and creating the containment
DAG. Figure 4(bottom) shows the typical shape of such a containment DAG. To
keep the comparison of the different evaluation strategies fair, we have eliminated
all equivalent constraints but one from every node.

Figure 5(left) shows the average time in seconds to evaluate the constraints of
5000 monitoring requests for an update containing 105 sequence records. Note
that the scale is logarithmic. The figure clearly indicates that the naive brute

 100

 1000

 10000

 100000

 1e+06

 1e+07

RT2T1

E
va

lu
at

io
n 

T
im

e 
(s

ec
)

Type of Graph

Evaluation Time

False Propagation
True Propagation

Streaming
Brute Force

T1 T2 R
False prop 0.5% 52% 38%
True prop 99% 99% 93%
Streaming 100% 100% 100%
Brute force 100% 100% 100%

Fig. 5. (left) Average evaluation time in seconds for 5000 monitoring requests on an
update consisting of 105 sequence records; (right) Average percentage of nodes in the
DAG that are evaluated



An Extensible Light-Weight XML-Based Monitoring System 293

force method is unsatisfactory and that the pure streaming method presents a
definite improvement. Further, false propagation outperforms every other
method where the obtained acceleration ranges from twice the speed (on R)
to several orders of magnitude (on T1 and T2). True propagation does not re-
sult in any improvement as only very few constraints evaluate to true, thereby
severely limiting the effect of true propagation. That only a very small part of
the input data is selected, is inherent to the situation of a monitoring system
where on the one hand users are interested in very specific sequences and on
the other hand research labs usually upload new sequences in bulk giving rise to
many related sequences, for instance, of the same organism. So, when no request
related to those organisms are specified a lot of updates are already discarded.

Figure 5(right) shows the average percentage of nodes in the DAG that every
method evaluates. For the pure streaming and the brute force approach this is
of course 100%. On graphs of type T2, false propagation only needs to evaluate
on average 50% of the nodes. So, one would expect that false propagation is
twice as fast as the pure streaming approach. However, the experiments show
that the latter is in fact 100 times faster. The reason is that false propagation
starts at the sinks which contain the simplest and fast to evaluate constraints.
So, the 50% of the nodes the method allows to discard contain the largest and
most time consuming to evaluate expressions. Actually, the reason that the pure
streaming method takes much more time on graphs of type T2 than on the
other graphs is that due to the construction of the graph (starting from the
most specific constraint which gets relaxed by every descendant) constraints are
on average more involved. Further, for random graphs, false propagation needs
only to evaluate 40% of the nodes on average, but only a speed up of a factor two
is obtained w.r.t. pure streaming. The reason is that due to the random DAG
structure of the graph, a lot of time is spent keeping track of which nodes still
need to be evaluated.

So, in all cases false propagation is the best method. The amount of improve-
ment depends on the shape of the containment graph.

7 Incremental Maintenance of the Containment DAG

The timings in the experiments of the previous section only concern the evalu-
ation of the constraints and not the time needed to compute the containment
DAG. Indeed, the containment DAG is independent of the updates and can there-
fore be computed beforehand. Actually, the DAG never needs to be computed
from scratch but can be maintained incrementally when new monitor requests
arrive or are removed.

Removing a request with constraint p is easy: locate the corresponding node in
the DAG and remove p from it; when no more constraints are present in the node
remove it and add edges from all its parents to all its children. Adding a request
with constraint p is more time consuming as in the worst case a linear number
of containment checks need to be done. In particular, we need to compute the
set of nodes U and L of upper and lower border nodes, respectively, such that
the following holds:



294 D. Van de Craen, F. Neven, and K. Koch

– for every constraint p1 in a node in U , p1 ⊆ p; there is no descendant node
of a node in U that contains a constraint p1 with p1 ⊆ p;

– for every constraint p2 in L, p ⊆ p2; there is no ancestor node of a node in
L that contains a constraint p2 with p ⊆ p2.

When there is a node n ∈ U ∩L, then p is equivalent to all constraints in n: add
p to n. Otherwise, add a new node n with constraint p, add edges to n from all
nodes in U , add edges from n to all nodes in L.

Instead of using a naive brute-force approach which checks for every node in
the DAG whether it is in U or L, we compute an initial upper and lower border,
and gradually refine them:

1. Initially, let U be the set of all sources, and let L be the set of all sinks;
2. repeat until no more changes

(a) if there is a child (with constraint p1) of a node n in U such that p1 ⊆ p
then replace n in U by all such children of n; and,

(b) if there is a parent (with constraint p2) of a node n in L such that p ⊆ p2
then replace n in L by all such parents of n.

Although our incremental algorithm reduces the number of containment tests,
the time spend performing containment tests is not negligible. For instance,
inserting a constraint in a containment DAG already containing 1250, 2500 and
5000 nodes takes on average 15, 30, and 60 seconds, respectively. In general,
this is not a problem as only a limited number of monitor requests will be
added/removed (say at most hundred).

At present, the construction of the containment graph is not completely sat-
isfactory. The bottleneck is the high complexity of the containment test. One
possibility to speed up the containment test is to transform constraints into
disjunctive normal form giving rise to a containment test of quadratic time com-
plexity (as opposed to exponential). Preliminary experiments on graphs of type
R show that this increases the total size of constraints by 25%. Constructing a
containment graph with 5000 nodes from scratch then only takes 60 seconds. It
remains to investigate in further detail the trade-of between fast containment
graph construction and the increase in size of the containment graph. Another
option, of course, is to require that users enter metadata constraints in disjunc-
tive normal form.

8 Conclusion

We have shown that the combination of state-of-the-art tools together with an
optimization technique suffices to implement a monitoring system for sequence
databases. A prototype will be made available soon for download at [11]. Cur-
rently, only Genbank is supported and as relevance constraints the system only
allows to specify constraints on E-value and the size of the match. At present,
some of the biologists of our university are testing the system and we are in-
corporating their feedback. For instance, one feature that needs to be added is



An Extensible Light-Weight XML-Based Monitoring System 295

shredding of input sequences. Rather than blasting a complete sequence they
want to blast every subsequence of a certain size. The latter will pose new com-
putational challenges. In particular, we want to improve the evaluation of the
false propagation method on highly linked DAGs (of type R). Further, all tests
in this paper are performed on generated data. We hope that the cooperation
with the biologists will give us enough real world data to test and improve our
algorithms on.

References

1. The Apache Xalan Project. http://xalan.apache.org.
2. Bioinformatic Sequence Markup Language (BSML). http://www.bsml.org.
3. Biomail. http://biomail.sourceforge.net/biomail.
4. Jade. http://www.biodigital.org/jade.
5. Limboole. http://fmv.jku.at/limboole/.
6. Limmat. http://fmv.jku.at/limmat/.
7. Pubcrawler. http://www.pubcrawler.ie.
8. PubMed Cubby. http://www.pubmed.gov.
9. Sciencedirect. http://www.sciencedirect.com.

10. World Wide Web Consortium. Extensible Markup Language (XML). http://www.
w3.org/XML.

11. The XSeqM website. http://alpha.uhasselt.be/dieter.vandecraen/XSeqM/.
12. M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective

dissemination of information. In Proceedings of the 26th International Confer-
ence on Very Large Data Bases (VLDB 2000), pages 53–64. Morgan Kaufmann
Publishers Inc., 2000.

13. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and Lipman D.J. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

14. J. Bleiholder, S. Khuller, F. Naumann, L. Raschid, and Y. Wu. Query planning in
the presence of overlapping sources. In Proceedings of the 10th International Con-
ference on Extending Database Technology (EDBT 2006), pages 811–828. Springer,
2006.

15. J. Bleiholder, Z. Naumann, F.and Lacroix, L Raschid, H. Murthy, and M.-E. Vi-
dal. Biofast: challenges in exploring linked life sciences sources. SIGMOD Record,
33(2):72–77, 2004.

16. E. Cerami. XML for Bioinformatics. Springer-Verlag, 2004.
17. J. Clark. XML Path Language (XPath). http://www.w3.org/TR/xpath.
18. Y. Diao, P. Fischer, M. Franklin, and R. To. YFilter: Efficient and Scalable Filtering

of XML Documents. In Proceedings of the 18th International Conference on Data
Engineering (ICDE’02), page 341. IEEE Computer Society, 2002.

19. Y. Diao and M.J. Franklin. High-Performance XML Filtering: An Overview of
YFilter. IEEE Data Engineering Bulletin, 26(1):41–48, 2003.

20. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

21. T.J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with
deterministic automata. In Proc. 9th International Conference on Database Theory
(ICDT 2003), pages 173–189, 2003.

22. K. Hokamp and K. Wolfe. What’s new in the library? What’s new in GenBank?
Let PubCrawler tell you. Trends in Genetics, 15(11):471–472, 1999.



296 D. Van de Craen, F. Neven, and K. Koch

23. K. Hokamp and K.H. Wolfe. PubCrawler: keeping up comfortably with PubMed
and GenBank. Nucleic Acids Research, 32(Web Server Issue):W16–W19, 2004.

24. F. Neven and D. Van de Craen. Optimizing monitoring queries over distributed
data. In Proceedings of the 10th International Conference on Extending Database
Technology (EDBT 2006), pages 829–846. Springer, 2006.

25. M. Shultz and S.L. De Groote. MEDLINE SDI services: how do they compare?
Journal of the Medical Library Association, 91(4):460–467, 2003.

26. J. F. Wilson. The rise of biological databases. The Scientist, 16(6):34, 2002.



Author Index

Aldana-Montes, Jose F. 224
Anstein, Stefanie 94
Antezana, Erick 19

Beerenwinkel, Niko 185
Belhajjame, Khalid 3, 240
Ben Miled, Zina 104
Benlian, Pascale 82
Birney, Ewan 195
Bowers, Shawn 248
Büch, Joachim 185

Cohen, Shirley 264
Cohen-Boulakia, Sarah 264
Coulet, Adrien 82
Cox, Tony 195

Däumer, Martin 185
Davidson, Susan 264
Devignes, Marie-Dominique 82
Dippold, Mindi 104
Down, Thomas A. 195

Embury, Suzanne M. 3, 240
Erlendsson, Björn 50
Eronen, Lauri 35

Fan, Hao 3
Finn, Rob 195
Fuchs, Norbert E. 66

Gawronska, Barbara 50
Golebiewski, Martin 94
Gräf, Stefan 195
Grossman, Robert L. 168
Gupta, Amarnath 152

Heumann, Klaus 232
Hintsanen, Petteri 35
Hoffmann, Daniel 185
Hubbard, Simon 3
Hubbard, Tim J.P. 195

Ivo, Grosse 114

Jackson, David 195
Jakonienė, Vaida 136
Jones, Andrew 3

Kähäri, Andreas 195
Kaiser, Rolf 185
Kalus, Wenzel 232
Kania, Renate 94
Kirsten, Toralf 124
Kleffe, Jürgen 114
Knoop, Sarah 2
Koch, Kerstin 280
Kozlov, Konstantin 204
Krebs, Olga 94
Kuhn, Tobias 66
Kuiper, Martin 19
Kulesha, Eugene 195
Kulovesi, Kimmo 35

Lambrix, Patrick 136
Lengauer, Thomas 185
Li, Nianhua 104
Losko, Sascha 232
Ludäscher, Bertram 248

Mahoui, Malika 104
Maltsev, Natalia 168
Markowitz, Victor M. 1
Martin, Nigel 3
McPhillips, Timothy 248
Mielordt, Sven 114
Mir, Saqib 94
Mironov, Vladimir 19

Napoli, Amedeo 82
Navas-Delgado, Ismael 224
Neglur, Greeshma 168
Neven, Frank 280

Olsson, Björn 50

Paton, Norman W. 3, 240
Pérez, Antonio J. 224
Pettett, Roger 195
Pisarev, Andrei 204
Poulovassilis, Alexandra 3



298 Author Index

Poustelnikova, Ekaterina 204
Prlić, Andreas 195

Rahm, Erhard 124
Ramge, Andrea 232
Rojas, Isabel 94
Roomp, Kirsten 185
Royer, Löıc 66
Rundqvist, David 136

Samsonova, Maria 204
Santini, Simone 152
Saric, Jasmin 94
Schröder, Michael 66
Schülter, Eugen 185
Selbig, Joachim 185
Sevon, Petteri 35
Siepen, Jennifer 3
Sierra-Aragon, Saleta 185
Sing, Tobias 185
Smäıl-Tabbone, Malika 82
Smith, James 195

Srinivasan, Sriram 104
Stalker, Jim 195

Tkachenko, Arthur 204
Toivonen, Hannu 35
Trelles, Oswaldo 224
Tsiporkova, Elena 19

Van de Craen, Dieter 280

Weidemann, Andreas 94
Wenger, Karsten 232
Wiehler, Jens 232
Wittig, Ulrike 94

Yang, Bing 104
Yang, Zhe 216
Ye, Chuan 216
Yu, Clement 168

Zamboulis, Lucas 3
Zhang, Dalu 216


	Frontmatter
	Keynotes
	An Application Driven Perspective on Biological Data Integration
	Towards a National Healthcare Information Infrastructure

	Data Integration
	Data Access and Integration in the ISPIDER Proteomics Grid
	A Cell-Cycle Knowledge Integration Framework
	Link Discovery in Graphs Derived from Biological Databases

	Text Mining
	Towards an Automated Analysis of Biomedical Abstracts
	Improving Text Mining with Controlled Natural Language: A Case Study for Protein Interactions
	SNP-Converter: An Ontology-Based Solution to Reconcile Heterogeneous SNP Descriptions for Pharmacogenomic Studies

	Systems I
	SABIO-RK: Integration and Curation of Reaction Kinetics Data
	SIBIOS Ontology: A Robust Package for the Integration and Pipelining of Bioinformatics Services
	Data Structures for Genome Annotation, Alternative Splicing, and Validation
	BioFuice: Mapping-Based Data Integration in Bioinformatics

	Potpourri
	A Method for Similarity-Based Grouping of Biological Data
	On Querying OBO Ontologies Using a DAG Pattern Query Language
	Using Term Lists and Inverted Files to Improve Search Speed for Metabolic Pathway Databases

	Systems II
	Arevir: A Secure Platform for Designing Personalized Antiretroviral Therapies Against HIV
	The Distributed Annotation System for Integration of Biological Data
	An Information Management System for Collaboration Within Distributed Working Environment

	Short Papers
	Ontology Analysis on Complexity and Evolution Based on Conceptual Model
	Distributed Execution of Workflows in the INB
	Knowledge Networks of Biological and Medical Data: An Exhaustive and Flexible Solution to Model Life Science Domains
	On Characterising and Identifying Mismatches in Scientific Workflows

	Workflow
	Collection-Oriented Scientific Workflows for Integrating and Analyzing Biological Data
	Towards a Model of Provenance and User Views in Scientific Workflows
	An Extensible Light-Weight XML-Based Monitoring System for Sequence Databases

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




